Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
J Colloid Interface Sci. 2023 Aug 15;644:238-245. doi: 10.1016/j.jcis.2023.04.076. Epub 2023 Apr 23.
Small size ruthenium (Ru) nanoparticles have shown remarkable potential for electrocatalytic hydrogen evolution reaction (HER). Nevertheless, the complicated preparation and relatively low activity of small size Ru nanoparticles are two key challenges. In this work, carbon nanotubes supported Ru nanoparticles catalysts (cnts@NC-Ru t °C) with different sizes were prepared via using the combination of L-3,4-dihydroxyphenylalanine (l-dopa) self-polymerization oxidation reaction and different high temperature annealing to study the variation of particle activity with size. Electrochemical test results showed that the optimized cnts@NC-Ru 700 °C catalyst exhibited a very low overpotential at 10 mA/cm (21 mV) and tafel slope of 34.93 mV/dec when the mass loading of precious metal per unit area was merely 12.11 μg/cm that surpassed most recently reported high-performance Ru based catalyst. The results of density functional theory (DFT) calculation showed that small Ru nanoparticles had abundant active sites, and the HO dissociation on small Ru nanoparticles (110) surface is quite easy than other surfaces, while (111) surface of small Ru nanoparticles is beneficial for Tafel step of HER. The synergy between (110) and (111) surfaces on the Ru cluster contributes to its outstanding HER performance. This study provides a novel design idea in promoting the preparation method and uncovering the reason of high activity of small size Ru nanoparticles.
小尺寸钌(Ru)纳米粒子在电催化析氢反应(HER)中表现出了显著的潜力。然而,小尺寸 Ru 纳米粒子的复杂制备和相对较低的活性是两个关键挑战。在这项工作中,通过使用 L-3,4-二羟基苯丙氨酸(l-多巴)自聚合氧化反应和不同的高温退火相结合,制备了具有不同尺寸的碳纳米管负载 Ru 纳米粒子催化剂(cnts@NC-Ru t °C),以研究粒径对活性的变化。电化学测试结果表明,当单位面积贵金属的质量负载仅为 12.11μg/cm 时,优化后的 cnts@NC-Ru 700°C 催化剂在 10 mA/cm 时表现出非常低的过电位(21 mV)和 34.93 mV/dec 的塔菲尔斜率,超过了最近报道的大多数高性能 Ru 基催化剂。密度泛函理论(DFT)计算结果表明,小尺寸 Ru 纳米粒子具有丰富的活性位,HO 在小尺寸 Ru 纳米粒子(110)表面上的解离比其他表面更容易,而小尺寸 Ru 纳米粒子的(111)表面有利于 HER 的塔菲尔步骤。Ru 团簇表面(110)和(111)之间的协同作用有助于其优异的 HER 性能。本研究为促进小尺寸 Ru 纳米粒子的制备方法提供了新的设计思路,并揭示了其高活性的原因。