School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, PR China; Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519000, PR China.
Guangdong Province Engineering Laboratory for Air Pollution Control, Guangzhou, PR China.
Sci Total Environ. 2023 Aug 10;885:163827. doi: 10.1016/j.scitotenv.2023.163827. Epub 2023 Apr 28.
Natural ventilation is an energy-efficient design approach to reduce infection risk (IR), but its optimized design in a coach bus environment is less studied. Based on a COVID-19 outbreak in a bus in Hunan, China, the indoor-outdoor coupled CFD modeling approach is adopted to comprehensively explore how optimized bus natural ventilation (e.g., opening/closing status of front/middle/rear windows (FW/MW/RW)) and ceiling wind catcher (WCH) affect the dispersion of pathogen-laden droplets (tracer gas, 5 μm, 50 μm) and IR. Other key influential factors including bus speed, infector's location, and ambient temperature (T) are also considered. Buses have unique natural ventilation airflow patterns: from bus rear to front, and air change rate per hour (ACH) increases linearly with bus speed. When driving at 60 km/h, ACH is only 6.14 h and intake fractions of tracer gas (IF) and 5 μm droplets (IF) are up to 3372 ppm and 1394 ppm with ventilation through leakages on skylights and no windows open. When FW and RW are both open, ACH increases by 43.5 times to 267.50 h, and IF and IF drop rapidly by 1-2 orders of magnitude compared to when no windows are open. Utilizing a wind catcher and opening front windows significantly increases ACH (up to 8.8 times) and reduces IF (5-30 times) compared to only opening front windows. When the infector locates at the bus front with FW open, IF and IF of all passengers are <10 ppm. More droplets suspend and further spread in a higher T environment. It is recommended to open two pairs of windows or open front windows and utilize the wind catcher to reduce IR in coach buses.
自然通风是一种降低感染风险(IR)的节能设计方法,但在长途客车环境中的优化设计研究较少。基于中国湖南一辆公共汽车上的 COVID-19 爆发事件,采用了室内外耦合 CFD 建模方法,全面探讨了优化后的客车自然通风(例如,前/中/后车窗的开启/关闭状态(FW/MW/RW)和车顶风帽(WCH)如何影响载有病原体的飞沫(示踪气体,5μm,50μm)的扩散和 IR。还考虑了其他关键影响因素,包括公共汽车速度、感染者位置和环境温度(T)。公共汽车具有独特的自然通风气流模式:从公共汽车尾部到前部,每小时空气交换率(ACH)随公共汽车速度线性增加。当以 60km/h 的速度行驶时,ACH 仅为 6.14h,并且通过天窗和无窗户开启的泄漏进行通风时,示踪气体(IF)和 5μm 飞沫(IF)的进气分数分别高达 3372ppm 和 1394ppm。当 FW 和 RW 都打开时,ACH 增加 43.5 倍,达到 267.50h,与无窗户打开时相比,IF 和 IF 迅速下降 1-2 个数量级。与仅打开前窗相比,利用风帽和打开前窗显著增加了 ACH(高达 8.8 倍),并降低了 IF(5-30 倍)。当感染者位于前部且 FW 打开时,所有乘客的 IF 和 IF 均<10ppm。更多的飞沫在更高的 T 环境中悬浮并进一步扩散。建议打开两对窗户或打开前窗并利用风帽来降低长途客车的 IR。