Suppr超能文献

一种新的综合算法用于评估 ICU 新发发热或不稳定的患者。

A Novel Comprehensive Algorithm for Evaluation of PICU Patients With New Fever or Instability.

机构信息

Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD.

Department of Hospital Epidemiology and Infection Control, Johns Hopkins Hospital, Baltimore, MD.

出版信息

Pediatr Crit Care Med. 2023 Aug 1;24(8):670-680. doi: 10.1097/PCC.0000000000003256. Epub 2023 May 1.

Abstract

OBJECTIVES

There is variation in microbiology testing among PICU patients with fever offering opportunities to reduce avoidable testing and treatment. Our objective is to describe the development and assess the impact of a novel comprehensive testing algorithm to support judicious testing practices and expanded diagnostic differentials for PICU patients with new fever or instability.

DESIGN

A mixed-methods quality improvement study.

SETTING

Single-center academic PICU and pediatric cardiac ICU.

SUBJECTS

Admitted PICU patients and physicians.

INTERVENTIONS

A multidisciplinary team developed a clinical decision-support algorithm.

MEASUREMENTS AND MAIN RESULTS

We evaluated blood, endotracheal, and urine cultures, urinalyses, and broad-spectrum antibiotic use per 1,000 ICU patient-days using statistical process control charts and incident rate ratios (IRRs) and assessed clinical outcomes 24 months pre- and 18 months postimplementation. We surveyed physicians weekly for 12 months postimplementation. Blood cultures declined by 17% (IRR, 0.83; 95% CI, 0.77-0.89), endotracheal cultures by 26% (IRR, 0.74; 95% CI, 0.63-0.86), and urine cultures by 36% (IRR, 0.64; 95% CI, 0.56-0.73). There was an anticipated rise in urinalysis testing by 23% (IRR, 1.23; 95% CI, 1.14-1.33). Despite higher acuity and fewer brief hospitalizations, mortality, hospital, and PICU readmissions were stable, and PICU length of stay declined. Of the 108 physician surveys, 46 replied (43%), and 39 (85%) recently used the algorithm; 0 reported patient safety concerns, two (4%) provided constructive feedback, and 28 (61%) reported the algorithm improved patient care.

CONCLUSIONS

A comprehensive fever algorithm was associated with reductions in blood, endotracheal, and urine cultures and anticipated increase in urinalyses. We detected no patient harm, and physicians reported improved patient care.

摘要

目的

小儿重症监护病房(PICU)发热患者的微生物学检测存在差异,这为减少不必要的检测和治疗提供了机会。我们的目的是描述一种新的综合检测算法的开发,并评估其对 PICU 新发发热或不稳定患者的合理检测实践和扩展诊断差异的影响。

设计

一项混合方法质量改进研究。

设置

单中心学术性 PICU 和儿科心脏重症监护病房。

研究对象

住院 PICU 患者和医生。

干预措施

一个多学科团队开发了一种临床决策支持算法。

测量和主要结果

我们使用统计过程控制图和发病率比值(IRR)评估了每 1000 例 ICU 患者-天的血液、气管内和尿液培养、尿液分析和广谱抗生素的使用情况,并在实施前 24 个月和实施后 18 个月评估了临床结果。我们在实施后 12 个月每周对医生进行调查。血液培养下降了 17%(IRR,0.83;95%置信区间,0.77-0.89),气管内培养下降了 26%(IRR,0.74;95%置信区间,0.63-0.86),尿液培养下降了 36%(IRR,0.64;95%置信区间,0.56-0.73)。预计尿液分析检测会增加 23%(IRR,1.23;95%置信区间,1.14-1.33)。尽管严重程度更高,住院时间更短,但死亡率、住院和 PICU 再入院率保持稳定,PICU 住院时间缩短。在 108 份医生调查问卷中,有 46 份(43%)回复,其中 39 份(85%)最近使用了该算法;没有报告患者安全问题,有两位(4%)提供了建设性的反馈,有 28 位(61%)报告该算法改善了患者的护理。

结论

综合发热算法与血液、气管内和尿液培养的减少相关,预计尿液分析的检测量会增加。我们没有发现患者受到伤害,医生报告说患者的护理得到了改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af3a/10392890/e72e5e5c8143/pcc-24-670-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验