Suppr超能文献

基于游标效应的光纤传感器的机器学习。

Machine learning for a Vernier-effect-based optical fiber sensor.

出版信息

Opt Lett. 2023 May 1;48(9):2488-2491. doi: 10.1364/OL.489471.

Abstract

In recent years, the optical Vernier effect has been demonstrated as an effective tool to improve the sensitivity of optical fiber interferometer-based sensors, potentially facilitating a new generation of highly sensitive fiber sensing systems. Previous work has mainly focused on the physical implementation of Vernier-effect-based sensors using different combinations of interferometers, while the signal demodulation aspect has been neglected. However, accurate and reliable extraction of useful information from the sensing signal is critically important and determines the overall performance of the sensing system. In this Letter, we, for the first time, propose and demonstrate that machine learning (ML) can be employed for the demodulation of optical Vernier-effect-based fiber sensors. ML analysis enables direct, fast, and reliable readout of the measurand from the optical spectrum, avoiding the complicated and cumbersome data processing required in the conventional demodulation approach. This work opens new avenues for the development of Vernier-effect-based high-sensitivity optical fiber sensing systems.

摘要

近年来,光学游标效应已被证明是一种提高光纤干涉仪传感器灵敏度的有效工具,有望为新一代高灵敏度光纤传感系统提供可能。以往的工作主要集中在使用不同干涉仪组合来实现基于游标效应的传感器的物理实现,而忽略了信号解调方面。然而,从传感信号中准确可靠地提取有用信息至关重要,这决定了传感系统的整体性能。在本信中,我们首次提出并证明了机器学习 (ML) 可用于基于光学游标效应的光纤传感器的解调。ML 分析能够直接、快速、可靠地从光学光谱中读取被测量,避免了传统解调方法所需的复杂而繁琐的数据处理。这项工作为基于游标效应的高灵敏度光纤传感系统的发展开辟了新的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验