Suppr超能文献

新型机器学习模型对有利结局预测的提供者使用的定量和定性评估。

Quantitative and Qualitative Evaluation of Provider Use of a Novel Machine Learning Model for Favorable Outcome Prediction.

机构信息

Yale School of Management, New Haven, CT.

NYU Langone Health, New York, NY.

出版信息

AMIA Annu Symp Proc. 2023 Apr 29;2022:1181-1187. eCollection 2022.

Abstract

Predictive models may be particularly beneficial to clinicians when they face uncertainty and seek to develop a mental model of disease progression, but we know little about the post-implementation effects of predictive models on clinicians' experience of their work. Combining survey and interview methods, we found that providers using a predictive algorithm reported being significantly less uncertain and better able to anticipate, plan and prepare for patient discharge than non-users. The tool helped hospitalists form and develop confidence in their mental models of a novel disease (Covid-19). Yet providers' attention to the predictive tool declined as their confidence in their own mental models grew. Predictive algorithms that not only offer data but also provide feedback on decisions, thus supporting providers' motivation for continuous learning, hold promise for more sustained provider attention and cognition augmentation.

摘要

预测模型在临床医生面临不确定性并寻求建立疾病进展的心理模型时可能特别有益,但我们对预测模型对临床医生工作体验的实施后影响知之甚少。通过结合调查和访谈方法,我们发现使用预测算法的提供者报告说,他们的不确定性显著降低,并且能够更好地预测、计划和准备患者出院。该工具帮助医院医生形成并对他们对一种新型疾病(Covid-19)的心理模型建立信心。然而,随着提供者对自己心理模型的信心增强,他们对预测工具的关注程度下降。不仅提供数据而且还提供决策反馈的预测算法为提供者提供了持续学习的动力,有望更持久地提高提供者的注意力和认知能力。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验