Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, Yokohama 240-8501, Japan.
Department of Chemistry and Life Science, Yokohama National University, Yokohama 240-8501, Japan.
ACS Appl Mater Interfaces. 2023 May 17;15(19):23104-23114. doi: 10.1021/acsami.3c01574. Epub 2023 May 2.
The utilization of sparingly solvating electrolytes has been reckoned as a promising approach to realizing high-energy-density lithium-sulfur batteries under lean electrolyte conditions through decoupling the electrolyte amount from sulfur utilization. However, the inferior wettability of high-concentration sparingly solvating electrolytes compromises mass transport, thereby impeding the maximum utilization of active material in sulfur cathodes. To address this issue, in this study, we incorporate lithium aluminate (LiAlO) nanoflakes as an additive to sulfur cathodes to enhance the mass transport by improving the percolation and accessibility of sparingly solvating electrolytes to the bulk of the electrodes. The electrochemical kinetics of LiAlO-containing sulfur cathodes are investigated using the galvanostatic intermittent titration technique. The Li self-diffusion coefficients of electrode materials were estimated through pulsed-field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. Finally, a 193 Wh kg Li-S pouch cell (excluding the mass of the laminated Al pouch) is demonstrated by utilizing the LiAlO-incorporated sulfur cathode with a high S-loading of 4.3 mg cm in a low electrolyte/sulfur (E/S) ratio of 3 μL mg. The Li-S pouch cell retains 80% of its initial specific cell capacity after 50 cycles. Our comprehensive understanding of the role of LiAlO additives in enhancing the mass transport and Li self-diffusion coefficient of sulfur cathodes will contribute immensely toward the development of high-energy-density Li-S batteries under lean electrolyte conditions.
在贫电解液条件下实现高能量密度锂硫电池的策略之一是利用具有低溶剂化能力的电解液,通过将电解液用量与硫的利用率解耦。然而,高浓度低溶剂化电解液的润湿性差会影响质量传输,从而阻碍硫正极中活性物质的最大利用。为了解决这个问题,本研究通过将纳米片状的氧化铝锂(LiAlO)作为添加剂加入硫正极,通过改善低溶剂化电解液在电极体相中的渗透和可及性来提高质量传输。采用恒电流间歇滴定技术(galvanostatic intermittent titration technique)研究了含 LiAlO 的硫正极的电化学动力学。通过脉冲场梯度核磁共振(pulsed-field gradient nuclear magnetic resonance, PFG-NMR)光谱法估计了电极材料的 Li 自扩散系数。最后,采用高载硫量(4.3 mg cm)和低电解液/硫(E/S)比(3 μL mg)的 LiAlO 掺杂硫正极组装了一个 193 Wh kg 的 Li-S 软包电池(不包括层压铝软包的质量)。该 Li-S 软包电池在 50 次循环后保留了 80%的初始比容量。我们对 LiAlO 添加剂在增强硫正极的质量传输和 Li 自扩散系数中的作用的全面理解,将极大地推动在贫电解液条件下开发高能量密度的 Li-S 电池。