Suppr超能文献

铜绿假单胞菌 gi|KP 163922|合成生物表面活性剂的生产、特性描述和动力学建模:一种机制观点。

Production, characterization, and kinetic modeling of biosurfactant synthesis by Pseudomonas aeruginosa gi |KP 163922|: a mechanism perspective.

机构信息

Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India.

出版信息

World J Microbiol Biotechnol. 2023 May 2;39(7):178. doi: 10.1007/s11274-023-03623-2.

Abstract

Kinetic studies and modeling of production parameters are essential for developing economical biosurfactant production processes. This study will provide a perspective on mechanistic reaction pathways to metabolize Waste Engine Oil (WEO). The results will provide relevant information on (i) WEO concentration above which growth inhibition occurs, (ii) chemical changes in WEO during biodegradation, and (iii) understanding of growth kinetics for the strain utilizing complex substrates. Laboratory scale experiments were conducted to study the kinetics and biodegradation potential of the strain Pseudomonas aeruginosa gi |KP 163922| over a range (0.5-8% (v/v)) of initial WEO concentration for 168 h. The kinetic models, such as Monod, Powell, Edward, Luong, and Haldane, were evaluated by fitting the experimental results in respective model equations. An unprecedented characterization of the substrate before and after degradation is presented, along with biosurfactant characterization. The secretion of biosurfactant during the growth, validated by surface tension reduction (72.07 ± 1.14 to 29.32 ± 1.08 mN/m), facilitated the biodegradation of WEO to less harmful components. The strain showed an increase in maximum specific growth rate (µ) from 0.0185 to 0.1415 h upto 49.92 mg/L WEO concentration. Maximum WEO degradation was found to be ~ 94% gravimetrically. The Luong model (adj. R = 0.97) adapted the experimental data using a non-linear regression method. Biochemical, H NMR, and FTIR analysis of the produced biosurfactant revealed a mixture of mono- and di- rhamnolipid. The degradation compounds in WEO were identified using FTIR, H NMR, and GC-MS analysis to deduce the mechanism.

摘要

研究生物表面活性剂生产过程的动力学和生产参数的建模对于开发经济的生物表面活性剂生产过程至关重要。本研究将提供一种关于代谢废发动机油(WEO)的机制反应途径的视角。结果将提供有关以下方面的相关信息:(i)发生生长抑制的 WEO 浓度,(ii)生物降解过程中 WEO 的化学变化,以及(iii)利用复杂底物的菌株的生长动力学的理解。进行了实验室规模的实验,以研究在初始 WEO 浓度为 0.5-8%(v/v)的范围内,菌株铜绿假单胞菌 gi |KP 163922|在 168 h 内的动力学和生物降解潜力。通过将实验结果拟合到各自的模型方程中,评估了动力学模型,如 Monod、Powell、Edward、Luong 和 Haldane。与生物表面活性剂的特征化一起,提出了对降解前后的底物的前所未有的特征化。生物表面活性剂的分泌通过表面张力降低(从 72.07 ± 1.14 降低到 29.32 ± 1.08 mN/m)来促进 WEO 降解为更有害的成分。该菌株的最大比生长速率(µ)从 0.0185 增加到 0.1415 h,最高可达 49.92 mg/L WEO 浓度。发现最大 WEO 降解量约为 94%。Luong 模型(adj. R = 0.97)使用非线性回归方法适应了实验数据。所产生的生物表面活性剂的生化、H NMR 和 FTIR 分析表明,混合物为单-和二-鼠李糖脂。使用 FTIR、H NMR 和 GC-MS 分析鉴定 WEO 中的降解化合物,以推断机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验