Suppr超能文献

了解吡虫啉的普遍性、持久性和微生物干预。

Insights into the ubiquity, persistence and microbial intervention of imidacloprid.

机构信息

Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.

出版信息

Arch Microbiol. 2023 May 2;205(5):215. doi: 10.1007/s00203-023-03516-w.

Abstract

Imidacloprid, a neonicotinoid pesticide, is employed to increase crop productivity. Meanwhile, its indiscriminate application severely affects the non-target organisms and the environment. As an eco-friendly and economically workable option, the microbial intervention has garnered much attention. This review concisely outlines the toxicity, long-term environmental repercussions, degradation kinetics, biochemical pathways, and interplay of genes implicated in imidacloprid remediation. The studies have highlighted imidacloprid residue persistence in the environment for up to 3000 days. In view of high persistence, effective intervention is highly required. Bacteria-mediated degradation has been established as a viable approach with Bacillus spp. being among the most efficient at 30 ℃ and pH 7. Further, a comparative metagenomic investigation reveals dominant neonicotinoid degradation genes in agriculture compared to forest soils with distinctive microbial communities. Functional metabolism of carbohydrates, amino acids, fatty acids, and lipids demonstrated a significantly superior relative abundance in forest soil, implying its quality and fertility. The CPM, CYP4C71v2, CYP4C72, and CYP6AY3v2 genes that synthesize cyt p450 monooxygenase enzyme play a leading role in imidacloprid degradation. In the future, a systems biology approach incorporating integrated kinetics should be utilized to come up with innovative strategies for moderating the adverse effects of imidacloprid on the environment.

摘要

吡虫啉是一种新烟碱类农药,用于提高作物产量。然而,其广泛的应用也对非靶标生物和环境造成了严重影响。作为一种环保且经济可行的选择,微生物干预措施引起了广泛关注。本文简要概述了吡虫啉的毒性、长期环境影响、降解动力学、生化途径以及参与其修复的基因相互作用。研究表明,吡虫啉在环境中的残留时间长达 3000 天。鉴于其高持久性,需要进行有效的干预。细菌介导的降解已被证明是一种可行的方法,其中芽孢杆菌属在 30℃和 pH7 下的效率最高。此外,一项比较宏基因组学研究表明,与森林土壤相比,农业土壤中具有更多的降解新烟碱类化合物的基因,并且具有不同的微生物群落。碳水化合物、氨基酸、脂肪酸和脂质的功能代谢在森林土壤中表现出显著更高的相对丰度,表明其质量和肥力更高。合成细胞色素 P450 单加氧酶的 CPM、CYP4C71v2、CYP4C72 和 CYP6AY3v2 基因在吡虫啉降解中起主要作用。未来,应该采用系统生物学方法结合整合动力学,制定出创新策略,以减轻吡虫啉对环境的不利影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验