IEEE J Biomed Health Inform. 2023 Jul;27(7):3314-3325. doi: 10.1109/JBHI.2023.3272342. Epub 2023 Jun 30.
Vessel contour detection (VCD) in intravascular images is important for the quantitative assessment of vessels. However, it is still a challenging task due to a high degree of morphology variability. Images from a single modality lack sufficient information on the vessel morphology due to the natural limitation of the imaging capability. Therefore, the single-modality VCD methods have difficulty extracting sufficient morphological information. Cross-modality methods have the potential to overcome morphology variability by extracting more information from different modalities. However, they still face the difficulty of the domain discrepancy, i.e., feature space discrepancy and label space inconsistency. In this paper, we aim to address the domain discrepancy for VCD. To overcome label space inconsistency, our method divides the label space into private label space and shared label space. It constructs subdomains for the private label space and the shared label space, and minimizes the task risk at the subdomain level. To overcome feature space discrepancy, it extracts domain-invariant features via domain adaptation between the subdomains. Finally, it uses the domain-invariant features as auxiliary information for each subdomain. Extensive experiments on 130 IVUS sequences (135663 images) and 124 OCT sequences (39857 images) show that our method is effective (e.g., the Dice index [Formula: see text] 0.949), and superior to the nineteen state-of-the-art VCD methods.
血管轮廓检测(VCD)在血管内图像中对于血管的定量评估很重要。然而,由于形态学的高度可变性,这仍然是一项具有挑战性的任务。由于成像能力的自然限制,单一模态的图像缺乏关于血管形态的足够信息。因此,单一模态的 VCD 方法很难提取出足够的形态学信息。跨模态方法有可能通过从不同模态中提取更多信息来克服形态可变性。然而,它们仍然面临着领域差异的困难,即特征空间差异和标签空间不一致。在本文中,我们旨在解决 VCD 的领域差异问题。为了克服标签空间不一致,我们的方法将标签空间划分为私有标签空间和共享标签空间。它为私有标签空间和共享标签空间构建子域,并在子域级别最小化任务风险。为了克服特征空间差异,它通过子域之间的域自适应来提取域不变特征。最后,它将域不变特征用作每个子域的辅助信息。在 130 个 IVUS 序列(135663 张图像)和 124 个 OCT 序列(39857 张图像)上的大量实验表明,我们的方法是有效的(例如,Dice 指数 [Formula: see text] 0.949),并且优于 19 种最先进的 VCD 方法。