Computational Science Lab, University of Amsterdam, Amsterdam, The Netherlands.
KPMG, Amstelveen, The Netherlands.
Sci Rep. 2023 May 2;13(1):7124. doi: 10.1038/s41598-023-34034-w.
Auditing is a multi-billion dollar market, with auditors assessing the trustworthiness of financial data, contributing to financial stability in a more interconnected and faster-changing world. We measure cross-sectoral structural similarities between firms using microscopic real-world transaction data. We derive network representations of companies from their transaction datasets, and we compute an embedding vector for each network. Our approach is based on the analysis of 300+ real transaction datasets that provide auditors with relevant insights. We detect significant changes in bookkeeping structure and the similarity between clients. For various tasks, we obtain good classification accuracy. Moreover, closely related companies are near in the embedding space while different industries are further apart suggesting that the measure captures relevant aspects. Besides the direct applications in computational audit, we expect this approach to be of use at multiple scales, from firms to countries, potentially elucidating structural risks at a broader scale.
审计是一个价值数十亿美元的市场,审计师评估财务数据的可信度,为更加互联和瞬息万变的世界中的金融稳定做出贡献。我们使用微观现实交易数据来衡量公司之间的跨部门结构相似性。我们从公司的交易数据集中得出公司的网络表示,并为每个网络计算一个嵌入向量。我们的方法基于对 300 多个提供审计师相关见解的真实交易数据集的分析。我们检测到簿记结构和客户之间相似性的重大变化。对于各种任务,我们获得了很好的分类准确性。此外,密切相关的公司在嵌入空间中彼此靠近,而不同的行业则相距更远,这表明该度量方法捕捉到了相关方面。除了在计算审计中的直接应用外,我们还期望这种方法在多个尺度上都有用,从公司到国家,可能在更广泛的范围内阐明结构风险。