School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA.
State Cartographer's Office, Department of Geography, University of Wisconsin-Madison, Madison, WI, USA.
Sci Rep. 2023 May 2;13(1):7122. doi: 10.1038/s41598-023-33895-5.
The global threat of antimicrobial resistance (AMR) varies regionally. This study explores whether geospatial analysis and data visualization methods detect both clinically and statistically significant variations in antibiotic susceptibility rates at a neighborhood level. This observational multicenter geospatial study collected 10 years of patient-level antibiotic susceptibility data and patient addresses from three regionally distinct Wisconsin health systems (UW Health, Fort HealthCare, Marshfield Clinic Health System [MCHS]). We included the initial Escherichia coli isolate per patient per year per sample source with a patient address in Wisconsin (N = 100,176). Isolates from U.S. Census Block Groups with less than 30 isolates were excluded (n = 13,709), resulting in 86,467 E. coli isolates. The primary study outcomes were the results of Moran's I spatial autocorrelation analyses to quantify antibiotic susceptibility as spatially dispersed, randomly distributed, or clustered by a range of - 1 to + 1, and the detection of statistically significant local hot (high susceptibility) and cold spots (low susceptibility) for variations in antibiotic susceptibility by U.S. Census Block Group. UW Health isolates collected represented greater isolate geographic density (n = 36,279 E. coli, 389 = blocks, 2009-2018), compared to Fort HealthCare (n = 5110 isolates, 48 = blocks, 2012-2018) and MCHS (45,078 isolates, 480 blocks, 2009-2018). Choropleth maps enabled a spatial AMR data visualization. A positive spatially-clustered pattern was identified from the UW Health data for ciprofloxacin (Moran's I = 0.096, p = 0.005) and trimethoprim/sulfamethoxazole susceptibility (Moran's I = 0.180, p < 0.001). Fort HealthCare and MCHS distributions were likely random. At the local level, we identified hot and cold spots at all three health systems (90%, 95%, and 99% CIs). AMR spatial clustering was observed in urban areas but not rural areas. Unique identification of AMR hot spots at the Block Group level provides a foundation for future analyses and hypotheses. Clinically meaningful differences in AMR could inform clinical decision support tools and warrants further investigation for informing therapy options.
抗微生物药物耐药性(AMR)的全球威胁因地区而异。本研究探讨了地理空间分析和数据可视化方法是否能在社区层面检测到抗生素敏感性率的临床和统计学显著变化。这项观察性多中心地理空间研究收集了三个威斯康星州卫生系统(威斯康星大学健康中心、福特健康保健中心、马什菲尔德诊所健康系统[MCHS])的 10 年患者水平抗生素敏感性数据和患者地址。我们纳入了每个患者每年每个样本来源中初始大肠杆菌分离株,患者地址在威斯康星州(N=100176)。排除了美国人口普查块组中少于 30 个分离株的患者(n=13709),结果得到 86467 株大肠杆菌分离株。主要研究结果是莫兰 I 空间自相关分析的结果,以量化抗生素敏感性的空间分散、随机分布或聚类范围为-1 到+1,并通过美国人口普查块组检测抗生素敏感性变化的统计学显著局部热点(高敏感性)和冷点(低敏感性)。与福特健康保健中心(n=5110 株,48 个块组,2012-2018)和 MCHS(45078 株,480 个块组,2009-2018)相比,UW 健康中心收集的分离株代表了更大的分离株地理密度(n=36279 株大肠杆菌,389 个块组,2009-2018)。专题地图使空间 AMR 数据可视化成为可能。从 UW 健康中心的数据中发现了一种阳性的空间聚类模式,用于环丙沙星(莫兰 I=0.096,p=0.005)和磺胺甲恶唑/甲氧苄啶敏感性(莫兰 I=0.180,p<0.001)。福特健康保健中心和 MCHS 的分布可能是随机的。在局部水平,我们在所有三个卫生系统中都确定了热点和冷点(90%、95%和 99%CI)。在城市地区观察到 AMR 空间聚类,但在农村地区没有。在块组层面上,独特地识别 AMR 热点为未来的分析和假设提供了基础。AMR 的临床意义差异可以为临床决策支持工具提供信息,并值得进一步研究,以提供治疗选择。