Safety Innovation and Analytics, GSK, Wavre, Belgium.
Safety Innovation and Analytics, GSK, Durham, NC, USA.
Drug Saf. 2023 Jun;46(6):601-614. doi: 10.1007/s40264-023-01306-3. Epub 2023 May 2.
Identifying individual characteristics or underlying conditions linked to adverse drug reactions (ADRs) can help optimise the benefit-risk ratio for individuals. A systematic evaluation of statistical methods to identify subgroups potentially at risk using spontaneous ADR report datasets is lacking.
In this study, we aimed to assess concordance between subgroup disproportionality scores and European Medicines Agency Pharmacovigilance Risk Assessment Committee (PRAC) discussions of potential subgroup risk.
The subgroup disproportionality method described by Sandberg et al., and variants, were applied to statistically screen for subgroups at potential increased risk of ADRs, using data from the US FDA Adverse Event Reporting System (FAERS) cumulative from 2004 to quarter 2 2021. The reference set used to assess concordance was manually extracted from PRAC minutes from 2015 to 2019. Mentions of subgroups presenting potential differentiated risk and overlapping with the Sandberg method were included.
Twenty-seven PRAC subgroup examples representing 1719 subgroup drug-event combinations (DECs) in FAERS were included. Using the Sandberg methodology, 2 of the 27 could be detected (one for age and one for sex). No subgroup examples for pregnancy and underlying condition were detected. With a methodological variant, 14 of 27 examples could be detected.
We observed low concordance between subgroup disproportionality scores and PRAC discussions of potential subgroup risk. Subgroup analyses performed better for age and sex, while for covariates not well-captured in FAERS, such as underlying condition and pregnancy, additional data sources should be considered.
识别与药物不良反应(ADR)相关的个体特征或潜在情况有助于优化个体的获益-风险比。目前缺乏使用自发 ADR 报告数据集识别潜在风险亚组的统计方法的系统评估。
在本研究中,我们旨在评估亚组不均衡评分与欧洲药品管理局药物警戒风险评估委员会(PRAC)讨论潜在亚组风险之间的一致性。
应用 Sandberg 等人描述的亚组不均衡方法和变体,使用 2004 年至 2021 年第 2 季度期间美国 FDA 不良事件报告系统(FAERS)的累积数据,从统计学上筛选出 ADR 风险增加的潜在亚组。用于评估一致性的参考集是从 2015 年至 2019 年的 PRAC 会议记录中手动提取的。包括提示潜在差异风险的亚组和与 Sandberg 方法重叠的亚组。
共纳入 27 个 PRAC 亚组示例,代表 FAERS 中 1719 个亚组药物-事件组合(DEC)。使用 Sandberg 方法学,可检测到 27 个中的 2 个(一个用于年龄,一个用于性别)。未检测到妊娠和潜在情况的亚组示例。使用方法学变体,可检测到 27 个示例中的 14 个。
我们观察到亚组不均衡评分与 PRAC 讨论潜在亚组风险之间的一致性较低。对于年龄和性别,亚组分析表现较好,而对于 FAERS 中未很好捕获的协变量,如潜在情况和妊娠,应考虑额外的数据来源。