Futaki Sugiko, Horimoto Ayano, Shimono Chisei, Norioka Naoko, Taniguchi Yukimasa, Hamaoka Hitomi, Kaneko Mari, Shigeta Mayo, Abe Takaya, Sekiguchi Kiyotoshi, Kondo Yoichi
Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
Matrix Biol Plus. 2023 Apr 8;18:100133. doi: 10.1016/j.mbplus.2023.100133. eCollection 2023 Jun.
Basement membranes (BMs) are thin, sheet-like extracellular structures that cover the basal side of epithelial and endothelial tissues and provide structural and functional support to adjacent cell layers. The molecular structure of BMs is a fine meshwork that incorporates specialized extracellular matrix proteins. Recently, live visualization of BMs in invertebrates demonstrated that their structure is flexible and dynamically rearranged during cell differentiation and organogenesis. However, the BM dynamics in mammalian tissues remain to be elucidated. We developed a mammalian BM imaging probe based on nidogen-1, a major BM-specific protein. Recombinant human nidogen-1 fused with an enhanced green fluorescent protein (Nid1-EGFP) retains its ability to bind to other BM proteins, such as laminin, type IV collagen, and perlecan, in a solid-phase binding assay. When added to the culture medium of embryoid bodies derived from mouse ES cells, recombinant Nid1-EGFP accumulated in the BM zone of embryoid bodies, and BMs were visualized . For BM imaging, a knock-in reporter mouse line expressing human nidogen-1 fused to the red fluorescent protein mCherry (R26-CAG-Nid1-mCherry) was generated. R26-CAG-Nid1-mCherry showed fluorescently labeled BMs in early embryos and adult tissues, such as the epidermis, intestine, and skeletal muscles, whereas BM fluorescence was unclear in several other tissues, such as the lung and heart. In the retina, Nid1-mCherry fluorescence visualized the BMs of vascular endothelium and pericytes. In the developing retina, Nid1-mCherry fluorescence labeled the BM of the major central vessels; however, the BM fluorescence were hardly observed in the peripheral growing tips of the vascular network, despite the presence of endothelial BM. Time-lapse observation of the retinal vascular BM after photobleaching revealed gradual recovery of Nid1-mCherry fluorescence, suggesting the turnover of BM components in developing retinal blood vessels. To the best of our knowledge, this is the first demonstration of BM imaging using a genetically engineered mammalian model. Although R26-CAG-Nid1-mCherry has some limitations as an BM imaging model, it has potential applications in the study of BM dynamics during mammalian embryogenesis, tissue regeneration, and pathogenesis.
基底膜(BMs)是薄的、片状的细胞外结构,覆盖上皮组织和内皮组织的基底侧,并为相邻细胞层提供结构和功能支持。BMs的分子结构是一个精细的网络,包含特殊的细胞外基质蛋白。最近,对无脊椎动物基底膜的实时可视化显示,它们的结构是灵活的,并且在细胞分化和器官发生过程中会动态重排。然而,哺乳动物组织中的基底膜动态仍有待阐明。我们基于主要的基底膜特异性蛋白巢蛋白-1开发了一种哺乳动物基底膜成像探针。与增强型绿色荧光蛋白融合的重组人巢蛋白-1(Nid1-EGFP)在固相结合试验中保留了其与其他基底膜蛋白(如层粘连蛋白、IV型胶原蛋白和基底膜聚糖)结合的能力。当添加到源自小鼠胚胎干细胞的胚状体培养基中时,重组Nid1-EGFP在胚状体的基底膜区域积累,从而实现了基底膜的可视化。为了进行基底膜成像,构建了一种敲入报告基因小鼠品系,其表达与人红色荧光蛋白mCherry融合的人巢蛋白-1(R26-CAG-Nid1-mCherry)。R26-CAG-Nid1-mCherry在早期胚胎和成年组织(如表皮、肠道和骨骼肌)中显示出荧光标记的基底膜,而在其他一些组织(如肺和心脏)中基底膜荧光不明显。在视网膜中,Nid1-mCherry荧光显示了血管内皮细胞和周细胞的基底膜。在发育中的视网膜中,Nid1-mCherry荧光标记了主要中央血管的基底膜;然而,尽管存在内皮基底膜,但在血管网络的外周生长尖端几乎观察不到基底膜荧光。光漂白后对视网膜血管基底膜的延时观察显示Nid1-mCherry荧光逐渐恢复,这表明发育中的视网膜血管中基底膜成分在更新。据我们所知,这是首次使用基因工程哺乳动物模型进行基底膜成像的证明。尽管R26-CAG-Nid1-mCherry作为基底膜成像模型有一些局限性,但它在研究哺乳动物胚胎发生、组织再生和发病机制过程中的基底膜动态方面具有潜在应用价值。
Matrix Biol Plus. 2023-4-8
Matrix Biol. 2010-4-18
Development. 2021-2-26
Nature. 2020-5-6
Life Sci Alliance. 2018-9-10