Osorio Nancy, Martineau Magalie, Fortea Marina, Rouget Céline, Penalba Virginie, Lee Cindy J, Boesmans Werend, Rolli-Derkinderen Malvyne, Patel Amit V, Mondielli Grégoire, Conrod Sandrine, Labat-Gest Vivien, Papin Amandine, Sasabe Jumpei, Sweedler Jonathan V, Vanden Berghe Pieter, Delmas Patrick, Mothet Jean-Pierre
Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille-Université, CNRS, UMR 7291, Marseille, France.
Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France.
bioRxiv. 2023 Apr 19:2023.04.19.537136. doi: 10.1101/2023.04.19.537136.
The enteric nervous system (ENS) is a complex network of diverse molecularly defined classes of neurons embedded in the gastrointestinal wall and responsible for controlling the major functions of the gut. As in the central nervous system, the vast array of ENS neurons is interconnected by chemical synapses. Despite several studies reporting the expression of ionotropic glutamate receptors in the ENS, their roles in the gut remain elusive. Here, by using an array of immunohistochemistry, molecular profiling and functional assays, we uncover a new role for d-serine (d-Ser) and non-conventional GluN1-GluN3 N-methyl d-aspartate receptors (NMDARs) in regulating ENS functions. We demonstrate that d-Ser is produced by serine racemase (SR) expressed in enteric neurons. By using both patch clamp recording and calcium imaging, we show that d-Ser alone acts as an excitatory neurotransmitter in the ENS independently of the conventional GluN1-GluN2 NMDARs. Instead, d-Ser directly gates the non-conventional GluN1-GluN3 NMDARs in enteric neurons from both mouse and guinea-pig. Pharmacological inhibition or potentiation of GluN1-GluN3 NMDARs had opposite effects on mouse colonic motor activities, while genetically driven loss of SR impairs gut transit and fluid content of pellet output. Our results demonstrate the existence of native GluN1-GluN3 NMDARs in enteric neurons and open new perspectives on the exploration of excitatory d-Ser receptors in gut function and diseases.
肠神经系统(ENS)是一个复杂的网络,由嵌入胃肠壁的多种分子定义的神经元类别组成,负责控制肠道的主要功能。与中枢神经系统一样,大量的肠神经系统神经元通过化学突触相互连接。尽管有几项研究报道了离子型谷氨酸受体在肠神经系统中的表达,但其在肠道中的作用仍不清楚。在这里,通过一系列免疫组织化学、分子分析和功能测定,我们发现了d-丝氨酸(d-Ser)和非常规的GluN1-GluN3 N-甲基-D-天冬氨酸受体(NMDARs)在调节肠神经系统功能方面的新作用。我们证明d-Ser是由肠神经元中表达的丝氨酸消旋酶(SR)产生的。通过膜片钳记录和钙成像,我们表明单独的d-Ser在肠神经系统中作为一种兴奋性神经递质起作用,独立于传统的GluN1-GluN2 NMDARs。相反,d-Ser直接激活来自小鼠和豚鼠肠神经元的非常规GluN1-GluN3 NMDARs。对GluN1-GluN3 NMDARs的药理学抑制或增强对小鼠结肠运动活动有相反的影响,而基因驱动的SR缺失会损害肠道运输和粪便输出的液体含量。我们的结果证明了肠神经元中存在天然的GluN1-GluN3 NMDARs,并为探索肠道功能和疾病中兴奋性d-Ser受体开辟了新的视角。