Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
Neuropharmacology. 2020 Oct 1;176:108117. doi: 10.1016/j.neuropharm.2020.108117. Epub 2020 May 7.
NMDA receptors are ligand-gated ion channels that mediate excitatory neurotransmission. Most native NMDA receptors are tetrameric assemblies of two glycine-binding GluN1 and two glutamate-binding GluN2 subunits. Co-assembly of the glycine-binding GluN1 with glycine-binding GluN3 subunits (GluN3A-B) creates glycine activated receptors that possess strikingly different functional and pharmacological properties compared to GluN1/GluN2 NMDA receptors. The role of GluN1/GluN3 receptors in neuronal function remains unknown, in part due to lack of pharmacological tools with which to explore their physiological roles. We have identified the negative allosteric modulator EU1180-438, which is selective for GluN1/GluN3 receptors over GluN1/GluN2 NMDA receptors, AMPA, and kainate receptors. EU1180-438 is also inactive at GABA, glycine, and P2X receptors, but displays inhibition of some nicotinic acetylcholine receptors. Furthermore, we demonstrate that EU1180-438 produces robust inhibition of glycine-activated current responses mediated by native GluN1/GluN3A receptors in hippocampal CA1 pyramidal neurons. EU1180-438 is a non-competitive antagonist with activity that is independent of membrane potential (i.e. voltage-independent), glycine concentration, and extracellular pH. Non-stationary fluctuation analysis of neuronal current responses provided an estimated weighted mean unitary conductance of 6.1 pS for GluN1/GluN3A channels, and showed that EU1180-438 has no effect on conductance. Site-directed mutagenesis suggests that structural determinants of EU1180-438 activity reside near a short pre-M1 helix that lies parallel to the plane of the membrane below the agonist binding domain. These findings demonstrate that structural differences between GluN3 and other glutamate receptor subunits can be exploited to generate subunit-selective ligands with utility in exploring the roles GluN3 in neuronal function.
NMDA 受体是配体门控离子通道,介导兴奋性神经递质传递。大多数天然 NMDA 受体是由两个甘氨酸结合的 GluN1 和两个谷氨酸结合的 GluN2 亚基组成的四聚体。甘氨酸结合的 GluN1 与甘氨酸结合的 GluN3 亚基(GluN3A-B)共同组装形成甘氨酸激活的受体,与 GluN1/GluN2 NMDA 受体相比,其具有显著不同的功能和药理学特性。GluN1/GluN3 受体在神经元功能中的作用尚不清楚,部分原因是缺乏可用于探索其生理作用的药理学工具。我们已经确定了负变构调节剂 EU1180-438,它对 GluN1/GluN3 受体具有选择性,而对 GluN1/GluN2 NMDA 受体、AMPA 和 kainate 受体则没有活性。EU1180-438 对 GABA、甘氨酸和 P2X 受体也没有活性,但对一些烟碱型乙酰胆碱受体有抑制作用。此外,我们证明 EU1180-438 可显著抑制海马 CA1 锥体神经元中内源性 GluN1/GluN3A 受体介导的甘氨酸激活电流反应。EU1180-438 是一种非竞争性拮抗剂,其活性与膜电位(即电压无关)、甘氨酸浓度和细胞外 pH 无关。神经元电流反应的非稳态波动分析提供了 GluN1/GluN3A 通道的加权平均单位电导估计值为 6.1 pS,并表明 EU1180-438 对电导没有影响。定点突变表明,EU1180-438 活性的结构决定因素位于平行于膜平面且位于激动剂结合域下方的短 M1 前螺旋附近。这些发现表明,可以利用 GluN3 与其他谷氨酸受体亚基之间的结构差异来产生具有亚基选择性的配体,用于探索 GluN3 在神经元功能中的作用。