Friedman Anika J, Padgette Hannah M, Kramer Levi, Liechty Evan T, Donovan Gregory W, Fox Jerome M, Shirts Michael R
University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309.
bioRxiv. 2023 Apr 18:2023.04.17.537234. doi: 10.1101/2023.04.17.537234.
Protein tyrosine phosphatases (PTPs) are emerging drug targets for many diseases, including type 2 diabetes, obesity, and cancer. However, a high degree of structural similarity between the catalytic domains of these enzymes has made the development of selective pharmacological inhibitors an enormous challenge. Our previous research uncovered two unfunctionalized terpenoid inhibitors that selectively inhibit PTP1B over TCPTP, two PTPs with high sequence conservation. Here, we use molecular modeling with experimental validation to study the molecular basis of this unusual selectivity. Molecular dynamics (MD) simulations indicate that PTP1B and TCPTP contain a conserved h-bond network that connects the active site to a distal allosteric pocket; this network stabilizes the closed conformation of the catalytically influential WPD loop, which it links to the L-11 loop and 3 and 7 helices-the C-terminal side of the catalytic domain. Terpenoid binding to either of two proximal allosteric sites-an site and a site-can disrupt the allosteric network. Interestingly, binding to the site forms a stable complex with only PTP1B; in TCPTP, where two charged residues disfavor binding at the site, the terpenoids bind to the site, which is conserved between the two proteins. Our findings indicate that minor amino acid differences at the poorly conserved site enable selective binding, a property that might be enhanced with chemical elaboration, and illustrate, more broadly, how minor differences in the conservation of neighboring-yet functionally similar-allosteric sites can have very different implications for inhibitor selectivity.
蛋白酪氨酸磷酸酶(PTPs)正成为包括2型糖尿病、肥胖症和癌症在内的多种疾病的药物靶点。然而,这些酶催化结构域之间高度的结构相似性使得开发选择性药理抑制剂成为一项巨大挑战。我们之前的研究发现了两种未功能化的萜类抑制剂,它们对PTP1B的选择性抑制作用强于TCPTP,这是两种具有高度序列保守性的PTP。在这里,我们通过实验验证的分子建模来研究这种异常选择性的分子基础。分子动力学(MD)模拟表明,PTP1B和TCPTP包含一个保守的氢键网络,该网络将活性位点连接到一个远端变构口袋;这个网络稳定了催化作用显著的WPD环的闭合构象,它将WPD环与L-11环以及α3和α7螺旋(催化结构域的C端)相连。萜类与两个近端变构位点之一(一个α位点和一个β位点)结合会破坏变构网络。有趣的是,与α位点结合仅与PTP1B形成稳定复合物;在TCPTP中,由于两个带电荷的残基不利于在α位点结合,萜类则与β位点结合,该位点在两种蛋白质之间是保守的。我们的研究结果表明,在保守性较差的α位点上的微小氨基酸差异使得能够进行选择性结合,这种特性可能通过化学修饰得到增强,并且更广泛地说明了相邻但功能相似的变构位点在保守性上的微小差异如何对抑制剂选择性产生非常不同的影响。