Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.
Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, China.
Mycoses. 2023 Aug;66(8):671-679. doi: 10.1111/myc.13598. Epub 2023 May 3.
Cryptococcosis and talaromycosis are known as 'neglected epidemics' due to their high case fatality rates and low concern. Clinically, the skin lesions of the two fungal diseases are similar and easily misdiagnosed. Therefore, this study aims to develop an algorithm to identify cryptococcosis/talaromycosis skin lesions.
Skin images of tararomiasis and cryptococcosis were collected from published articles and augmented using the Python Imaging Library (PIL). Then, five deep artificial intelligence models, VGG19, MobileNet, InceptionV3, Incept ResNetV2 and DenseNet201, were developed based on the collected datasets using transfer learning technology. Finally, the performance of the models was evaluated using sensitivity, specificity, F1 score, accuracy, AUC and ROC curve.
In total, 159 articles (79 for cryptococcosis and 80 for talaromycosis), including 101 cryptococcosis skin lesion images and 133 talaromycosis skin lesion images, were collected for further mode construction. Five methods showed good performance for prediction but did not yield satisfactory results for all cases. Among them, DenseNet201 performed best in the validation set, followed by InceptionV3. However, InceptionV3 showed the highest sensitivity, accuracy, F1 score and AUC values in the training set, followed by DenseNet201. The specificity of DenseNet201 in the training set is better than that of InceptionV3.
DenseNet201 and InceptionV3 are equivalent to the optimal model in these conditions and can be used in clinical settings as decision support tools for the identification and classification of skin lesions of cryptococcus/talaromycosis.
隐球菌病和足放线病菌病因其高病死率和低关注度而被称为“被忽视的流行症”。临床上,两种真菌病的皮肤损害相似,容易误诊。因此,本研究旨在开发一种识别隐球菌/足放线病菌病皮肤损害的算法。
从已发表的文章中收集足放线病菌病和隐球菌病的皮肤图像,并使用 Python 图像处理库(PIL)进行扩充。然后,基于收集的数据集,使用迁移学习技术,开发了五个深度学习人工智能模型,即 VGG19、MobileNet、InceptionV3、Incept ResNetV2 和 DenseNet201。最后,使用灵敏度、特异性、F1 评分、准确性、AUC 和 ROC 曲线评估模型的性能。
共收集了 159 篇文章(79 篇关于隐球菌病,80 篇关于足放线病菌病),包括 101 例隐球菌病皮肤损害图像和 133 例足放线病菌病皮肤损害图像,用于进一步构建模型。五种方法在预测方面表现良好,但并非所有病例都能得到满意的结果。其中,DenseNet201 在验证集上的表现最佳,其次是 InceptionV3。然而,InceptionV3 在训练集上的灵敏度、准确性、F1 评分和 AUC 值最高,其次是 DenseNet201。DenseNet201 在训练集上的特异性优于 InceptionV3。
在这些条件下,DenseNet201 和 InceptionV3 是等效的最优模型,可以作为识别和分类隐球菌/足放线病菌病皮肤损害的临床决策支持工具。