Suppr超能文献

基于深度学习的色素沉着性皮肤病图像分类与辅助诊断系统

Image classification and auxiliary diagnosis system for hyperpigmented skin diseases based on deep learning.

作者信息

Lu Jianyun, Tong Xiaoliang, Wu Hongping, Liu Yaoxinchuan, Ouyang Huidan, Zeng Qinghai

机构信息

Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, PR China.

Vocational Teachers College, Jiangxi Agricultural University, NanChang 330045, PR China.

出版信息

Heliyon. 2023 Sep 16;9(9):e20186. doi: 10.1016/j.heliyon.2023.e20186. eCollection 2023 Sep.

Abstract

BACKGROUND AND AIM

Melasma (ML), naevus fusco-caeruleus zygomaticus (NZ), freckles (FC), cafe-au-lait spots (CS), nevus of ota (NO), and lentigo simplex (LS), are common skin diseases causing hyperpigmentation. Deep learning algorithms learn the inherent laws and representation levels of sample data and can analyze the internal details of the image and classify it objectively to be used for image diagnosis. However, deep learning algorithms that can assist clinicians in diagnosing skin hyperpigmentation conditions are lacking.

METHODS

The optimal deep-learning image recognition algorithm was explored for the auxiliary diagnosis of hyperpigmented skin disease. Pretrained models, such as VGG-19, GoogLeNet, InceptionV3, ResNet50V2, ResNet101V2, ResNet152V2, InceptionResNetV2, DesseNet201, MobileNet, and NASNetMobile were used to classify images of six common hyperpigmented skin diseases. The best deep learning algorithm for developing an online clinical diagnosis system was selected by using accuracy and area under curve (AUC) as evaluation indicators.

RESULTS

In this research, the parameters of the above-mentioned ten deep learning algorithms were 18333510, 5979702, 21815078, 23577094, 42638854, 58343942, 54345958, 18333510, 3235014, and 4276058, respectively, and their training time was 380, 162, 199, 188, 315, 511, 471, 697, 101, and 144 min respectively. The respective accuracies of the training set were 85.94%, 99.72%, 99.61%, 99.52%, 99.52%, 98.84%, 99.61%, 99.13%, 99.52%, and 99.61%. The accuracy rates of the test set data were 73.28%, 57.40%, 70.04%, 71.48%, 68.23%, 71.11%, 71.84%, 73.28%, 70.39%, and 43.68%, respectively. Finally, the areas of AUC curves were 0.93, 0.86, 0.93, 0.91, 0.91, 0.92, 0.93, 0.92, 0.93, and 0.82, respectively.

CONCLUSIONS

The experimental parameters, training time, accuracy, and AUC of the above models suggest that MobileNet provides a good clinical application prospect in the auxiliary diagnosis of hyperpigmented skin.

摘要

背景与目的

黄褐斑(ML)、颧部褐青色痣(NZ)、雀斑(FC)、咖啡斑(CS)、太田痣(NO)和单纯性雀斑样痣(LS)是引起色素沉着的常见皮肤病。深度学习算法能够学习样本数据的内在规律和表示层次,可分析图像内部细节并进行客观分类,用于图像诊断。然而,目前缺乏能够辅助临床医生诊断皮肤色素沉着病症的深度学习算法。

方法

探索用于色素沉着性皮肤病辅助诊断的最优深度学习图像识别算法。使用预训练模型,如VGG - 19、GoogLeNet、InceptionV3、ResNet50V2、ResNet101V2、ResNet152V2、InceptionResNetV2、DesseNet201、MobileNet和NASNetMobile对六种常见色素沉着性皮肤病的图像进行分类。以准确率和曲线下面积(AUC)作为评估指标,选择用于开发在线临床诊断系统的最佳深度学习算法。

结果

本研究中,上述十种深度学习算法的参数分别为18333510、5979702、21815078、23577094、42638854、58343942、54345958、18333510、3235014和4276058,其训练时间分别为380、162、199、188、315、511、471、697、101和144分钟。训练集各自的准确率分别为85.94%、99.72%、99.61%、99.52%、99.52%、98.84%、99.61%、99.13%、99.52%和99.61%。测试集数据的准确率分别为73.28%、57.40%、70.04%、71.48%、68.23%、71.11%、71.84%、73.28%、70.39%和43.68%。最后,AUC曲线面积分别为0.93、0.86、0.93、0.91、0.91、0.92、0.93、0.92、0.93和0.82。

结论

上述模型的实验参数、训练时间、准确率和AUC表明,MobileNet在色素沉着性皮肤的辅助诊断中具有良好的临床应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70dd/10559947/79d8597d68b7/gr1.jpg

相似文献

8
Lasers.激光
Ann Dermatol Venereol. 2012 Dec;139 Suppl 4:S159-65. doi: 10.1016/S0151-9638(12)70129-1.

本文引用的文献

2
Disorders of Facial Hyperpigmentation.面部色素沉着障碍。
Dermatol Clin. 2023 Jul;41(3):393-405. doi: 10.1016/j.det.2023.02.005. Epub 2023 Apr 14.
5
Nevus of Ota.太田痣
J Gen Intern Med. 2023 Apr;38(5):1302. doi: 10.1007/s11606-022-07968-6. Epub 2022 Nov 28.
6
Large café-au-lait spots on a 5-year-old boy.一名5岁男孩身上出现的大片牛奶咖啡斑。
JAAD Case Rep. 2022 Aug 27;28:127-129. doi: 10.1016/j.jdcr.2022.08.025. eCollection 2022 Oct.
8
Causality matters in medical imaging.医学影像学中因果关系很重要。
Nat Commun. 2020 Jul 22;11(1):3673. doi: 10.1038/s41467-020-17478-w.
9
A deep learning system for differential diagnosis of skin diseases.深度学习系统用于皮肤病的鉴别诊断。
Nat Med. 2020 Jun;26(6):900-908. doi: 10.1038/s41591-020-0842-3. Epub 2020 May 18.
10
DNA-based predictive models for the presence of freckles.基于 DNA 的雀斑预测模型。
Forensic Sci Int Genet. 2019 Sep;42:252-259. doi: 10.1016/j.fsigen.2019.07.012. Epub 2019 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验