Suppr超能文献

基于 Hough 变换的多目标自动聚焦压缩全息术。

Hough transform-based multi-object autofocusing compressive holography.

出版信息

Appl Opt. 2023 Apr 1;62(10):D23-D30. doi: 10.1364/AO.478473.

Abstract

Reconstruction of multiple objects from one hologram can be affected by the focus metric judgment of autofocusing. Various segmentation algorithms are applied to obtain a single object in the hologram. Each object is unambiguously reconstructed to acquire its focal position, which produces complicated calculations. Herein, Hough transform (HT)-based multi-object autofocusing compressive holography is presented. The sharpness of each reconstructed image is computed by using a focus metric such as entropy or variance. According to the characteristics of the object, the standard HT is further used for calibration to remove redundant extreme points. The compressive holographic imaging framework with a filter layer can eliminate the inherent noise in in-line reconstruction including cross talk noise of different depth layers, two-order noise, and twin image noise. The proposed method can effectively obtain 3D information on multiple objects and achieve noise elimination by only reconstructing from one hologram.

摘要

从一个全息图中重建多个物体可能会受到自动对焦对焦度量判断的影响。各种分割算法被应用于从全息图中获取单个物体。每个物体都被明确地重建以获取其焦点位置,这会产生复杂的计算。在此,提出了基于霍夫变换(HT)的多物体自动对焦压缩全息术。使用焦点度量(如熵或方差)计算每个重建图像的清晰度。根据物体的特点,进一步使用标准 HT 进行校准以去除冗余的极值点。具有滤波层的压缩全息成像框架可以消除在线重建中的固有噪声,包括不同深度层的串扰噪声、二阶噪声和孪生图像噪声。该方法可以有效地获取多个物体的 3D 信息,并通过仅从一个全息图重建来实现噪声消除。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验