Suppr超能文献

使用物理驱动神经网络在数字全息显微镜中对生物细胞的三维形态进行单次重建。

Single-shot reconstruction of three-dimensional morphology of biological cells in digital holographic microscopy using a physics-driven neural network.

作者信息

Kim Jihwan, Kim Youngdo, Lee Hyo Seung, Seo Eunseok, Lee Sang Joon

机构信息

Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.

Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea.

出版信息

Nat Commun. 2025 May 24;16(1):4840. doi: 10.1038/s41467-025-60200-x.

Abstract

Recent advances in deep learning-based image reconstruction techniques have led to significant progress in phase retrieval using digital in-line holographic microscopy (DIHM). However, existing phase retrieval methods have technical limitations in 3D morphology reconstruction from single-shot holograms of biological cells. In this study, we propose a deep learning model, named MorpHoloNet, for single-shot reconstruction of 3D morphology by integrating physics-driven and coordinate-based neural networks. By simulating optical diffraction of coherent light through a 3D phase shift distribution, MorpHoloNet is optimized by minimizing the loss between simulated and input holograms on the detector plane. MorpHoloNet enables direct reconstruction of 3D complex light field and 3D morphology of a test sample from its single-shot hologram without requiring multiple phase-shifted holograms or angular scanning. It would be utilized to reconstruct spatiotemporal variations in 3D translational and rotational behaviors, as well as morphological deformations of biological cells from consecutive single-shot holograms captured using DIHM.

摘要

基于深度学习的图像重建技术的最新进展,已在使用数字同轴全息显微镜(DIHM)进行相位检索方面取得了显著进展。然而,现有的相位检索方法在从生物细胞的单次全息图进行三维形态重建方面存在技术局限性。在本研究中,我们提出了一种名为MorpHoloNet的深度学习模型,用于通过整合物理驱动和基于坐标的神经网络对三维形态进行单次重建。通过模拟相干光通过三维相移分布的光学衍射,MorpHoloNet通过最小化探测器平面上模拟全息图与输入全息图之间的损失来进行优化。MorpHoloNet能够从测试样品的单次全息图直接重建三维复光场和三维形态,而无需多个相移全息图或角度扫描。它将被用于从使用DIHM捕获的连续单次全息图重建生物细胞三维平移和旋转行为的时空变化以及形态变形。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/12103610/7a767d3dde3d/41467_2025_60200_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验