Appl Opt. 2023 Mar 1;62(7):1738-1744. doi: 10.1364/AO.481424.
Computational ghost imaging (CGI) can reconstruct scene images by two-order correlation between sampling patterns and detected intensities from a bucket detector. By increasing the sampling rates (SRs), imaging quality of CGI can be improved, but it will result in an increasing imaging time. Herein, in order to achieve high-quality CGI under an insufficient SR, we propose two types of novel sampling methods for CGI, to the best of our knowledge, cyclic sinusoidal-pattern-based CGI (CSP-CGI) and half-cyclic sinusoidal-pattern-based CGI (HCSP-CGI), in which CSP-CGI is realized by optimizing the ordered sinusoidal patterns through "cyclic sampling patterns," and HCSP-CGI just uses half of the sinusoidal pattern types of CSP-CGI. Target information mainly exists in the low-frequency region, and high-quality target scenes can be recovered even at an extreme SR of 5%. The proposed methods can significantly reduce the sampling number and real-time ghost imaging possible. The experiments demonstrate the superiority of our method over state-of-the-art methods both qualitatively and quantitatively.
计算鬼成像(CGI)可以通过桶探测器中采样图案和检测强度之间的二阶相关来重建场景图像。通过提高采样率(SR),可以提高 CGI 的成像质量,但会导致成像时间增加。为此,为了在低 SR 下实现高质量的 CGI,我们提出了两种新型的 CGI 采样方法,据我们所知,循环正弦模式的 CGI(CSP-CGI)和半循环正弦模式的 CGI(HCSP-CGI),其中 CSP-CGI 通过“循环采样图案”对有序正弦图案进行优化来实现,而 HCSP-CGI 仅使用 CSP-CGI 的一半正弦图案类型。目标信息主要存在于低频区域,即使在极端的 5%SR 下,也可以恢复高质量的目标场景。所提出的方法可以显著减少采样数量和实时鬼成像的可能性。实验证明了我们的方法在定性和定量方面都优于最先进的方法。