Key Laboratory of Biomimetic Robots and Systems, School of Optics and Photonics, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China.
Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314003, China.
Sensors (Basel). 2022 Jun 5;22(11):4290. doi: 10.3390/s22114290.
Unlike traditional optical imaging schemes, computational ghost imaging (CGI) provides a way to reconstruct images with the spatial distribution information of illumination patterns and the light intensity collected by a single-pixel detector or bucket detector. Compared with stationary scenes, the relative motion between the target and the imaging system in a dynamic scene causes the degradation of reconstructed images. Therefore, we propose a time-variant retina-like computational ghost imaging method for axially moving targets. The illuminated patterns are specially designed with retina-like structures, and the radii of foveal region can be modified according to the axial movement of target. By using the time-variant retina-like patterns and compressive sensing algorithms, high-quality imaging results are obtained. Experimental verification has shown its effectiveness in improving the reconstruction quality of axially moving targets. The proposed method retains the inherent merits of CGI and provides a useful reference for high-quality GI reconstruction of a moving target.
与传统的光学成像方案不同,计算鬼成像(CGI)提供了一种通过照明模式的空间分布信息和单像素探测器或桶探测器收集的光强度来重建图像的方法。与静态场景相比,动态场景中目标和成像系统之间的相对运动导致重建图像的退化。因此,我们提出了一种用于轴向运动目标的时变视网膜样计算鬼成像方法。照明模式采用视网膜样结构专门设计,并且可以根据目标的轴向运动来修改中央凹区域的半径。通过使用时变视网膜样图案和压缩感知算法,可以获得高质量的成像结果。实验验证表明,它在提高轴向运动目标的重建质量方面具有有效性。所提出的方法保留了 CGI 的固有优点,为运动目标的高质量 GI 重建提供了有用的参考。