Suppr超能文献

多组学鉴定出致病性 MRPL39 变异导致的大核糖体亚基不稳定是引起儿科发病线粒体疾病的原因。

Multi-omics identifies large mitoribosomal subunit instability caused by pathogenic MRPL39 variants as a cause of pediatric onset mitochondrial disease.

机构信息

Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.

Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia.

出版信息

Hum Mol Genet. 2023 Jul 20;32(15):2441-2454. doi: 10.1093/hmg/ddad069.

Abstract

MRPL39 encodes one of 52 proteins comprising the large subunit of the mitochondrial ribosome (mitoribosome). In conjunction with 30 proteins in the small subunit, the mitoribosome synthesizes the 13 subunits of the mitochondrial oxidative phosphorylation (OXPHOS) system encoded by mitochondrial Deoxyribonucleic acid (DNA). We used multi-omics and gene matching to identify three unrelated individuals with biallelic variants in MRPL39 presenting with multisystem diseases with severity ranging from lethal, infantile-onset (Leigh syndrome spectrum) to milder with survival into adulthood. Clinical exome sequencing of known disease genes failed to diagnose these patients; however quantitative proteomics identified a specific decrease in the abundance of large but not small mitoribosomal subunits in fibroblasts from the two patients with severe phenotype. Re-analysis of exome sequencing led to the identification of candidate single heterozygous variants in mitoribosomal genes MRPL39 (both patients) and MRPL15. Genome sequencing identified a shared deep intronic MRPL39 variant predicted to generate a cryptic exon, with transcriptomics and targeted studies providing further functional evidence for causation. The patient with the milder disease was homozygous for a missense variant identified through trio exome sequencing. Our study highlights the utility of quantitative proteomics in detecting protein signatures and in characterizing gene-disease associations in exome-unsolved patients. We describe Relative Complex Abundance analysis of proteomics data, a sensitive method that can identify defects in OXPHOS disorders to a similar or greater sensitivity to the traditional enzymology. Relative Complex Abundance has potential utility for functional validation or prioritization in many hundreds of inherited rare diseases where protein complex assembly is disrupted.

摘要

MRPL39 编码了 52 种蛋白质之一,这些蛋白质组成了线粒体核糖体(mitoribosome)的大亚基。与小亚基中的 30 种蛋白质一起,mitoribosome 合成了线粒体 DNA 编码的线粒体氧化磷酸化(OXPHOS)系统的 13 个亚基。我们使用多组学和基因匹配方法鉴定了三个无关个体,他们在 MRPL39 中具有双等位基因变异,表现出多系统疾病,严重程度从致命的婴儿期发病( Leigh 综合征谱)到较轻,有存活到成年。对已知疾病基因的临床外显子组测序未能诊断这些患者;然而,定量蛋白质组学鉴定出两个严重表型患者的成纤维细胞中大但不是小的线粒体核糖体亚基的丰度特异性降低。对外显子组测序的重新分析导致鉴定出候选单杂合变体在 mitoribosomal 基因 MRPL39(两个患者)和 MRPL15 中。基因组测序确定了一个共享的深内含子 MRPL39 变异,预计会产生一个隐藏的外显子,转录组学和靶向研究为因果关系提供了进一步的功能证据。病情较轻的患者是通过 trio 外显子组测序鉴定出的错义变异的纯合子。我们的研究强调了定量蛋白质组学在检测蛋白质特征和表征外显子未解决患者的基因 - 疾病关联中的效用。我们描述了相对复杂丰度分析蛋白质组学数据,这是一种敏感的方法,可以检测到 OXPHOS 障碍的缺陷,其灵敏度与传统酶学相似或更高。相对复杂丰度在数百种蛋白质复合物组装受到破坏的遗传性罕见疾病中具有潜在的功能验证或优先级排序的潜力。

相似文献

引用本文的文献

本文引用的文献

6
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验