Suppr超能文献

多样化样本生成:突破无数据生成量化的极限

Diverse Sample Generation: Pushing the Limit of Generative Data-Free Quantization.

作者信息

Qin Haotong, Ding Yifu, Zhang Xiangguo, Wang Jiakai, Liu Xianglong, Lu Jiwen

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):11689-11706. doi: 10.1109/TPAMI.2023.3272925. Epub 2023 Sep 5.

Abstract

Generative data-free quantization emerges as a practical compression approach that quantizes deep neural networks to low bit-width without accessing the real data. This approach generates data utilizing batch normalization (BN) statistics of the full-precision networks to quantize the networks. However, it always faces the serious challenges of accuracy degradation in practice. We first give a theoretical analysis that the diversity of synthetic samples is crucial for the data-free quantization, while in existing approaches, the synthetic data completely constrained by BN statistics experimentally exhibit severe homogenization at distribution and sample levels. This paper presents a generic Diverse Sample Generation (DSG) scheme for the generative data-free quantization, to mitigate detrimental homogenization. We first slack the statistics alignment for features in the BN layer to relax the distribution constraint. Then, we strengthen the loss impact of the specific BN layers for different samples and inhibit the correlation among samples in the generation process, to diversify samples from the statistical and spatial perspectives, respectively. Comprehensive experiments show that for large-scale image classification tasks, our DSG can consistently quantization performance on different neural architectures, especially under ultra-low bit-width. And data diversification caused by our DSG brings a general gain to various quantization-aware training and post-training quantization approaches, demonstrating its generality and effectiveness.

摘要

无数据生成量化作为一种实用的压缩方法出现,它能在不访问真实数据的情况下将深度神经网络量化到低比特宽度。这种方法利用全精度网络的批量归一化(BN)统计信息来生成数据,从而对网络进行量化。然而,在实际应用中,它始终面临着精度下降的严峻挑战。我们首先进行了理论分析,发现合成样本的多样性对于无数据量化至关重要,而在现有方法中,完全受BN统计信息约束的合成数据在分布和样本层面上实验性地表现出严重的同质化。本文提出了一种用于无数据生成量化的通用多样样本生成(DSG)方案,以减轻有害的同质化。我们首先放宽BN层中特征的统计对齐,以放松分布约束。然后,我们增强不同样本特定BN层的损失影响,并在生成过程中抑制样本之间的相关性,分别从统计和空间角度使样本多样化。综合实验表明,对于大规模图像分类任务,我们的DSG能够在不同的神经架构上持续提升量化性能,尤其是在超低比特宽度下。并且我们的DSG所带来的数据多样化为各种量化感知训练和训练后量化方法带来了普遍的收益,证明了其通用性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验