Suppr超能文献

用全 8 位整数训练高性能和大规模深度神经网络。

Training high-performance and large-scale deep neural networks with full 8-bit integers.

机构信息

Department of Precision Instrument, Center for Brain Inspired Computing Research, Tsinghua University, Beijing 100084, China; Beijing Innovation Center for Future Chip, Tsinghua University, Beijing 100084, China.

Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA.

出版信息

Neural Netw. 2020 May;125:70-82. doi: 10.1016/j.neunet.2019.12.027. Epub 2020 Jan 15.

Abstract

Deep neural network (DNN) quantization converting floating-point (FP) data in the network to integers (INT) is an effective way to shrink the model size for memory saving and simplify the operations for compute acceleration. Recently, researches on DNN quantization develop from inference to training, laying a foundation for the online training on accelerators. However, existing schemes leaving batch normalization (BN) untouched during training are mostly incomplete quantization that still adopts high precision FP in some parts of the data paths. Currently, there is no solution that can use only low bit-width INT data during the whole training process of large-scale DNNs with acceptable accuracy. In this work, through decomposing all the computation steps in DNNs and fusing three special quantization functions to satisfy the different precision requirements, we propose a unified complete quantization framework termed as "WAGEUBN" to quantize DNNs involving all data paths including W (Weights), A (Activation), G (Gradient), E (Error), U (Update), and BN. Moreover, the Momentum optimizer is also quantized to realize a completely quantized framework. Experiments on ResNet18/34/50 models demonstrate that WAGEUBN can achieve competitive accuracy on the ImageNet dataset. For the first time, the study of quantization in large-scale DNNs is advanced to the full 8-bit INT level. In this way, all the operations in the training and inference can be bit-wise operations, pushing towards faster processing speed, decreased memory cost, and higher energy efficiency. Our throughout quantization framework has great potential for future efficient portable devices with online learning ability.

摘要

深度神经网络(DNN)量化将网络中的浮点数(FP)数据转换为整数(INT)是一种有效的方法,可以缩小模型尺寸以节省内存并简化计算加速操作。最近,DNN 量化的研究从推理扩展到训练,为加速器上的在线训练奠定了基础。然而,现有的方案在训练过程中不触及批量归一化(BN),大多是不完整的量化,在数据路径的某些部分仍然采用高精度 FP。目前,还没有一种解决方案可以在使用大规模 DNN 进行整个训练过程中仅使用低比特宽度 INT 数据,并保持可接受的精度。在这项工作中,通过分解 DNN 中的所有计算步骤,并融合三个特殊的量化函数来满足不同的精度要求,我们提出了一个统一的完整量化框架,称为“WAGEUBN”,用于量化包括 W(权重)、A(激活)、G(梯度)、E(误差)、U(更新)和 BN 在内的所有数据路径的 DNN。此外,还对 Momentum 优化器进行了量化,以实现完全量化的框架。在 ResNet18/34/50 模型上的实验表明,WAGEUBN 可以在 ImageNet 数据集上实现有竞争力的精度。这是首次将大规模 DNN 中的量化研究推进到全 8 位 INT 级别。这样,训练和推理中的所有操作都可以是位运算,从而实现更快的处理速度、降低内存成本和更高的能效。我们的全面量化框架具有很大的潜力,可以用于未来具有在线学习能力的高效便携式设备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验