Suppr超能文献

利用启发式技术优化污水处理厂的发电机组的可用性。

Availability optimization of power generating units used in sewage treatment plants using metaheuristic techniques.

机构信息

Department of Mathematics & Statistics Manipal University Jaipur, Jaipur, India.

Department of Computer & Communication Engineering, Manipal University Jaipur, Jaipur, India.

出版信息

PLoS One. 2023 May 4;18(5):e0284848. doi: 10.1371/journal.pone.0284848. eCollection 2023.

Abstract

Metaheuristic techniques have been utilized extensively to predict industrial systems' optimum availability. This prediction phenomenon is known as the NP-hard problem. Though, most of the existing methods fail to attain the optimal solution due to several limitations like slow rate of convergence, weak computational speed, stuck in local optima, etc. Consequently, in the present study, an effort has been made to develop a novel mathematical model for power generating units assembled in sewage treatment plants. Markov birth-death process is adopted for model development and generation of Chapman-Kolmogorov differential-difference equations. The global solution is discovered using metaheuristic techniques, namely genetic algorithm and particle swarm optimization. All time-dependent random variables associated with failure rates are considered exponentially distributed, while repair rates follow the arbitrary distribution. The repair and switch devices are perfect and random variables are independent. The numerical results of system availability have been derived for different values of crossover, mutation, several generations, damping ratio, and population size to attain optimum value. The results were also shared with plant personnel. Statistical investigation of availability results justifies that particle swarm optimization outdoes genetic algorithm in predicting the availability of power-generating systems. In present study a Markov model is proposed and optimized for performance evaluation of sewage treatment plant. The developed model is one that can be useful for sewage treatment plant designers in establishing new plants and purposing maintenance policies. The same procedure of performance optimization can be adopted in other process industries too.

摘要

元启发式技术已被广泛应用于预测工业系统的最佳可用性。这种预测现象被称为 NP 难问题。然而,由于收敛速度慢、计算速度弱、陷入局部最优等多种限制,大多数现有方法都无法获得最佳解决方案。因此,在本研究中,我们努力为污水处理厂中组装的发电单元开发一种新的数学模型。采用马尔可夫birth-death 过程进行模型开发和 Chapman-Kolmogorov 微分差分方程的生成。使用元启发式技术,即遗传算法和粒子群优化来发现全局解。所有与故障率相关的时变随机变量都假定为指数分布,而修复率遵循任意分布。修复和开关设备是完美的,随机变量是独立的。针对不同的交叉、突变、几代、阻尼比和种群大小值,得出了系统可用性的数值结果,以达到最佳值。结果也与工厂人员共享。可用性结果的统计调查表明,粒子群优化在预测发电系统的可用性方面优于遗传算法。在本研究中,提出并优化了一个马尔可夫模型,用于评估污水处理厂的性能。所开发的模型对于污水处理厂的设计者建立新工厂和制定维护政策非常有用。同样的性能优化过程也可以应用于其他过程工业。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a00/10159125/123062e41db3/pone.0284848.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验