Suppr超能文献

耦合元启发式优化的XGBoost与SHAP在揭示多环芳烃环境归宿方面的潜力

Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing PAHs Environmental Fate.

作者信息

Jovanovic Gordana, Perisic Mirjana, Bacanin Nebojsa, Zivkovic Miodrag, Stanisic Svetlana, Strumberger Ivana, Alimpic Filip, Stojic Andreja

机构信息

Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia.

Faculty of Informatics and Computing, Singidunum University, 11000 Belgrade, Serbia.

出版信息

Toxics. 2023 Apr 21;11(4):394. doi: 10.3390/toxics11040394.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) refer to a group of several hundred compounds, among which 16 are identified as priority pollutants, due to their adverse health effects, frequency of occurrence, and potential for human exposure. This study is focused on benzo(a)pyrene, being considered an indicator of exposure to a PAH carcinogenic mixture. For this purpose, we have applied the XGBoost model to a two-year database of pollutant concentrations and meteorological parameters, with the aim to identify the factors which were mostly associated with the observed benzo(a)pyrene concentrations and to describe types of environments that supported the interactions between benzo(a)pyrene and other polluting species. The pollutant data were collected at the energy industry center in Serbia, in the vicinity of coal mining areas and power stations, where the observed benzo(a)pyrene maximum concentration for a study period reached 43.7 ngm-3. The metaheuristics algorithm has been used to optimize the XGBoost hyperparameters, and the results have been compared to the results of XGBoost models tuned by eight other cutting-edge metaheuristics algorithms. The best-produced model was later on interpreted by applying Shapley Additive exPlanations (SHAP). As indicated by mean absolute SHAP values, the temperature at the surface, arsenic, PM10, and total nitrogen oxide (NOx) concentrations appear to be the major factors affecting benzo(a)pyrene concentrations and its environmental fate.

摘要

多环芳烃(PAHs)是指几百种化合物的集合,其中16种被确定为优先污染物,这是由于它们对健康有不利影响、出现频率高以及人类接触的可能性。本研究聚焦于苯并(a)芘,它被视为多环芳烃致癌混合物暴露的一个指标。为此,我们将XGBoost模型应用于一个包含污染物浓度和气象参数的两年数据库,目的是确定与观测到的苯并(a)芘浓度最相关的因素,并描述支持苯并(a)芘与其他污染物种之间相互作用的环境类型。污染物数据是在塞尔维亚的能源工业中心收集的,该中心位于煤矿区和发电站附近,在研究期间观测到的苯并(a)芘最大浓度达到43.7 ngm-3。已使用元启发式算法来优化XGBoost超参数,并将结果与其他八种前沿元启发式算法调整后的XGBoost模型结果进行比较。后来通过应用Shapley加法解释(SHAP)对产生的最佳模型进行了解释。如平均绝对SHAP值所示,地表温度、砷、PM10和总氮氧化物(NOx)浓度似乎是影响苯并(a)芘浓度及其环境归宿的主要因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6434/10142005/3abbd927cc77/toxics-11-00394-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验