Suppr超能文献

基于数据的临床研究纳入标准优化方法。

A data-driven approach to optimizing clinical study eligibility criteria.

机构信息

Department of Biomedical Informatics, Columbia University, New York, NY, USA.

Department of Neurology, Columbia University, New York, NY, USA.

出版信息

J Biomed Inform. 2023 Jun;142:104375. doi: 10.1016/j.jbi.2023.104375. Epub 2023 May 2.

Abstract

OBJECTIVE

Feasible, safe, and inclusive eligibility criteria are crucial to successful clinical research recruitment. Existing expert-centered methods for eligibility criteria selection may not be representative of real-world populations. This paper presents a novel model called OPTEC (OPTimal Eligibility Criteria) based on the Multiple Attribute Decision Making method boosted by an efficient greedy algorithm.

METHODS

It systematically identifies the optimal criteria combination for a given medical condition with the optimal tradeoff among feasibility, patient safety, and cohort diversity. The model offers flexibility in attribute configurations and generalizability to various clinical domains. The model was evaluated on two clinical domains (i.e., Alzheimer's disease and Neoplasm of pancreas) using two datasets (i.e., MIMIC-III dataset and NewYork-Presbyterian/Columbia University Irving Medical Center (NYP/CUIMC) database).

RESULTS

We simulated the process of automatically optimizing eligibility criteria according to user-specified prioritization preferences and generated recommendations based on the top-ranked criteria combination accordingly (top 0.41-2.75%) with OPTEC. Harnessing the power of the model, we designed an interactive criteria recommendation system and conducted a case study with an experienced clinical researcher using the think-aloud protocol.

CONCLUSIONS

The results demonstrated that OPTEC could be used to recommend feasible eligibility criteria combinations, and to provide actionable recommendations for clinical study designers to construct a feasible, safe, and diverse cohort definition during early study design.

摘要

目的

可行、安全且包容性的入选标准对于成功开展临床研究招募至关重要。现有的以专家为中心的入选标准选择方法可能无法代表真实人群。本文提出了一种名为 OPTEC(最优入选标准)的新模型,该模型基于多属性决策方法,并通过高效的贪婪算法进行了增强。

方法

它系统地确定了针对给定医疗条件的最佳标准组合,在可行性、患者安全性和队列多样性之间实现了最佳权衡。该模型在属性配置方面具有灵活性,并可推广到各种临床领域。该模型在两个临床领域(即阿尔茨海默病和胰腺肿瘤)使用两个数据集(即 MIMIC-III 数据集和纽约长老会/哥伦比亚大学欧文医学中心(NYP/CUIMC)数据库)进行了评估。

结果

我们根据用户指定的优先级偏好自动优化入选标准的过程进行了模拟,并根据 OPTEC 生成的基于排名最高的标准组合的建议(前 0.41-2.75%)。利用该模型的强大功能,我们设计了一个交互式标准推荐系统,并使用出声思维协议与一位有经验的临床研究人员进行了案例研究。

结论

结果表明,OPTECH 可用于推荐可行的入选标准组合,并为临床研究设计者在早期研究设计中构建可行、安全且多样化的队列定义提供可操作的建议。

相似文献

1
A data-driven approach to optimizing clinical study eligibility criteria.
J Biomed Inform. 2023 Jun;142:104375. doi: 10.1016/j.jbi.2023.104375. Epub 2023 May 2.
2
Towards clinical data-driven eligibility criteria optimization for interventional COVID-19 clinical trials.
J Am Med Inform Assoc. 2021 Jan 15;28(1):14-22. doi: 10.1093/jamia/ocaa276.
3
Desiderata for Major Eligibility Criteria in Breast Cancer Clinical Trials.
AMIA Annu Symp Proc. 2015 Nov 5;2015:2025-34. eCollection 2015.
6
A method for discovering and inferring appropriate eligibility criteria in clinical trial protocols without labeled data.
BMC Med Inform Decis Mak. 2013;13 Suppl 1(Suppl 1):S6. doi: 10.1186/1472-6947-13-S1-S6. Epub 2013 Apr 5.
8
Evaluating predictive modeling algorithms to assess patient eligibility for clinical trials from routine data.
BMC Med Inform Decis Mak. 2013 Dec 9;13:134. doi: 10.1186/1472-6947-13-134.
9

引用本文的文献

本文引用的文献

1
A conceptual framework for external validity.
J Biomed Inform. 2021 Sep;121:103870. doi: 10.1016/j.jbi.2021.103870. Epub 2021 Jul 21.
2
Evaluating eligibility criteria of oncology trials using real-world data and AI.
Nature. 2021 Apr;592(7855):629-633. doi: 10.1038/s41586-021-03430-5. Epub 2021 Apr 7.
3
A knowledge base of clinical trial eligibility criteria.
J Biomed Inform. 2021 May;117:103771. doi: 10.1016/j.jbi.2021.103771. Epub 2021 Apr 1.
4
Towards clinical data-driven eligibility criteria optimization for interventional COVID-19 clinical trials.
J Am Med Inform Assoc. 2021 Jan 15;28(1):14-22. doi: 10.1093/jamia/ocaa276.
5
Zero-cell corrections in random-effects meta-analyses.
Res Synth Methods. 2020 Nov;11(6):913-919. doi: 10.1002/jrsm.1460. Epub 2020 Oct 21.
6
Racial Disproportionality in Covid Clinical Trials.
N Engl J Med. 2020 Aug 27;383(9):e59. doi: 10.1056/NEJMp2021971. Epub 2020 Aug 11.
7
Recruitment and retention of participants in clinical studies: Critical issues and challenges.
Perspect Clin Res. 2020 Apr-Jun;11(2):51-53. doi: 10.4103/picr.PICR_6_20. Epub 2020 May 6.
9
Multi-criteria decision analysis for health technology assessment: addressing methodological challenges to improve the state of the art.
Eur J Health Econ. 2019 Aug;20(6):891-918. doi: 10.1007/s10198-019-01052-3. Epub 2019 Apr 20.
10
Criteria2Query: a natural language interface to clinical databases for cohort definition.
J Am Med Inform Assoc. 2019 Apr 1;26(4):294-305. doi: 10.1093/jamia/ocy178.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验