Department of Biomedical Informatics, Columbia University, New York, NY, USA.
Department of Neurology, Columbia University, New York, NY, USA.
J Biomed Inform. 2023 Jun;142:104375. doi: 10.1016/j.jbi.2023.104375. Epub 2023 May 2.
Feasible, safe, and inclusive eligibility criteria are crucial to successful clinical research recruitment. Existing expert-centered methods for eligibility criteria selection may not be representative of real-world populations. This paper presents a novel model called OPTEC (OPTimal Eligibility Criteria) based on the Multiple Attribute Decision Making method boosted by an efficient greedy algorithm.
It systematically identifies the optimal criteria combination for a given medical condition with the optimal tradeoff among feasibility, patient safety, and cohort diversity. The model offers flexibility in attribute configurations and generalizability to various clinical domains. The model was evaluated on two clinical domains (i.e., Alzheimer's disease and Neoplasm of pancreas) using two datasets (i.e., MIMIC-III dataset and NewYork-Presbyterian/Columbia University Irving Medical Center (NYP/CUIMC) database).
We simulated the process of automatically optimizing eligibility criteria according to user-specified prioritization preferences and generated recommendations based on the top-ranked criteria combination accordingly (top 0.41-2.75%) with OPTEC. Harnessing the power of the model, we designed an interactive criteria recommendation system and conducted a case study with an experienced clinical researcher using the think-aloud protocol.
The results demonstrated that OPTEC could be used to recommend feasible eligibility criteria combinations, and to provide actionable recommendations for clinical study designers to construct a feasible, safe, and diverse cohort definition during early study design.
可行、安全且包容性的入选标准对于成功开展临床研究招募至关重要。现有的以专家为中心的入选标准选择方法可能无法代表真实人群。本文提出了一种名为 OPTEC(最优入选标准)的新模型,该模型基于多属性决策方法,并通过高效的贪婪算法进行了增强。
它系统地确定了针对给定医疗条件的最佳标准组合,在可行性、患者安全性和队列多样性之间实现了最佳权衡。该模型在属性配置方面具有灵活性,并可推广到各种临床领域。该模型在两个临床领域(即阿尔茨海默病和胰腺肿瘤)使用两个数据集(即 MIMIC-III 数据集和纽约长老会/哥伦比亚大学欧文医学中心(NYP/CUIMC)数据库)进行了评估。
我们根据用户指定的优先级偏好自动优化入选标准的过程进行了模拟,并根据 OPTEC 生成的基于排名最高的标准组合的建议(前 0.41-2.75%)。利用该模型的强大功能,我们设计了一个交互式标准推荐系统,并使用出声思维协议与一位有经验的临床研究人员进行了案例研究。
结果表明,OPTECH 可用于推荐可行的入选标准组合,并为临床研究设计者在早期研究设计中构建可行、安全且多样化的队列定义提供可操作的建议。