ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; School of Health Sciences, Blanquerna-Universitat Ramon Llull, Barcelona, Spain.
ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
J Clin Epidemiol. 2023 Jul;159:274-288. doi: 10.1016/j.jclinepi.2023.04.011. Epub 2023 May 2.
To identify prognostic models which estimate the risk of critical COVID-19 in hospitalized patients and to assess their validation properties.
We conducted a systematic review in Medline (up to January 2021) of studies developing or updating a model that estimated the risk of critical COVID-19, defined as death, admission to intensive care unit, and/or use of mechanical ventilation during admission. Models were validated in two datasets with different backgrounds (HM [private Spanish hospital network], n = 1,753, and ICS [public Catalan health system], n = 1,104), by assessing discrimination (area under the curve [AUC]) and calibration (plots).
We validated 18 prognostic models. Discrimination was good in nine of them (AUCs ≥ 80%) and higher in those predicting mortality (AUCs 65%-87%) than those predicting intensive care unit admission or a composite outcome (AUCs 53%-78%). Calibration was poor in all models providing outcome's probabilities and good in four models providing a point-based score. These four models used mortality as outcome and included age, oxygen saturation, and C-reactive protein among their predictors.
The validity of models predicting critical COVID-19 by using only routinely collected predictors is variable. Four models showed good discrimination and calibration when externally validated and are recommended for their use.
确定可用于评估住院患者新冠肺炎重症风险的预测模型,并评估其验证性能。
我们在 Medline(截至 2021 年 1 月)中进行了一项系统评价,纳入了开发或更新预测新冠肺炎重症风险模型的研究,重症新冠肺炎的定义为死亡、入住重症监护病房和/或住院期间使用机械通气。我们使用来自两个不同背景的数据集(HM[西班牙私立医院网络],n=1753 和 ICS[加泰罗尼亚公共卫生系统],n=1104)对模型进行验证,通过评估区分度(曲线下面积[AUC])和校准(图)来评估验证性能。
我们验证了 18 个预测模型。其中 9 个模型的区分度较好(AUC 值≥80%),预测死亡率的模型(AUC 值为 65%-87%)优于预测入住重症监护病房或复合结局的模型(AUC 值为 53%-78%)。所有提供结局概率的模型校准均较差,而提供基于点的评分的 4 个模型校准较好。这 4 个模型将死亡率作为结局,其预测因子包括年龄、氧饱和度和 C 反应蛋白。
仅使用常规收集的预测因子预测新冠肺炎重症的模型的有效性存在差异。当在外部数据集验证时,有 4 个模型表现出良好的区分度和校准度,建议使用。