文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

败血症患者深度确定性策略梯度算法的给药策略模型。

A dosing strategy model of deep deterministic policy gradient algorithm for sepsis patients.

机构信息

Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China.

Shanghai Nuanhe Brain Technology Co., Ltd, Shanghai, China.

出版信息

BMC Med Inform Decis Mak. 2023 May 4;23(1):81. doi: 10.1186/s12911-023-02175-7.


DOI:10.1186/s12911-023-02175-7
PMID:37143048
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10161635/
Abstract

BACKGROUND: A growing body of research suggests that the use of computerized decision support systems can better guide disease treatment and reduce the use of social and medical resources. Artificial intelligence (AI) technology is increasingly being used in medical decision-making systems to obtain optimal dosing combinations and improve the survival rate of sepsis patients. To meet the real-world requirements of medical applications and make the training model more robust, we replaced the core algorithm applied in an AI-based medical decision support system developed by research teams at the Massachusetts Institute of Technology (MIT) and IMPERIAL College London (ICL) with the deep deterministic policy gradient (DDPG) algorithm. The main objective of this study was to develop an AI-based medical decision-making system that makes decisions closer to those of professional human clinicians and effectively reduces the mortality rate of sepsis patients. METHODS: We used the same public intensive care unit (ICU) dataset applied by the research teams at MIT and ICL, i.e., the Multiparameter Intelligent Monitoring in Intensive Care III (MIMIC-III) dataset, which contains information on the hospitalizations of 38,600 adult sepsis patients over the age of 15. We applied the DDPG algorithm as a strategy-based reinforcement learning approach to construct an AI-based medical decision-making system and analyzed the model results within a two-dimensional space to obtain the optimal dosing combination decision for sepsis patients. RESULTS: The results show that when the clinician administered the exact same dose as that recommended by the AI model, the mortality of the patients reached the lowest rate at 11.59%. At the same time, according to the database, the baseline mortality rate of the patients was calculated as 15.7%. This indicates that the patient mortality rate when difference between the doses administered by clinicians and those determined by the AI model was zero was approximately 4.2% lower than the baseline patient mortality rate found in the dataset. The results also illustrate that when a clinician administered a different dose than that recommended by the AI model, the patient mortality rate increased, and the greater the difference in dose, the higher the patient mortality rate. Furthermore, compared with the medical decision-making system based on the Deep-Q Learning Network (DQN) algorithm developed by the research teams at MIT and ICL, the optimal dosing combination recommended by our model is closer to that given by professional clinicians. Specifically, the number of patient samples administered by clinicians with the exact same dose recommended by our AI model increased by 142.3% compared with the model based on the DQN algorithm, with a reduction in the patient mortality rate of 2.58%. CONCLUSIONS: The treatment plan generated by our medical decision-making system based on the DDPG algorithm is closer to that of a professional human clinician with a lower mortality rate in hospitalized sepsis patients, which can better help human clinicians deal with complex conditional changes in sepsis patients in an ICU. Our proposed AI-based medical decision-making system has the potential to provide the best reference dosing combinations for additional drugs.

摘要

背景:越来越多的研究表明,使用计算机化决策支持系统可以更好地指导疾病治疗并减少社会和医疗资源的使用。人工智能 (AI) 技术越来越多地应用于医疗决策系统,以获得最佳的剂量组合并提高脓毒症患者的生存率。为了满足医疗应用的实际要求并使训练模型更稳健,我们用深度确定性策略梯度 (DDPG) 算法替换了麻省理工学院 (MIT) 和伦敦帝国理工学院 (ICL) 研究团队开发的基于 AI 的医疗决策支持系统中应用的核心算法。本研究的主要目的是开发一种基于 AI 的医疗决策系统,该系统做出的决策更接近专业人类临床医生的决策,并有效降低脓毒症患者的死亡率。

方法:我们使用了与 MIT 和 ICL 研究团队相同的公共重症监护病房 (ICU) 数据集,即多参数智能监护在重症监护 III (MIMIC-III) 数据集,其中包含了 38600 名 15 岁以上成年脓毒症患者住院的信息。我们应用 DDPG 算法作为基于策略的强化学习方法来构建基于 AI 的医疗决策系统,并在二维空间内分析模型结果,以获得脓毒症患者的最佳剂量组合决策。

结果:结果表明,当临床医生给予与 AI 模型推荐的完全相同的剂量时,患者的死亡率达到最低,为 11.59%。同时,根据数据库,计算出患者的基础死亡率为 15.7%。这表明,当临床医生给予的剂量与 AI 模型确定的剂量之间的差异为零时,患者的死亡率比数据库中发现的患者基础死亡率低约 4.2%。结果还表明,当临床医生给予与 AI 模型推荐的不同剂量时,患者的死亡率会增加,剂量差异越大,患者的死亡率越高。此外,与 MIT 和 ICL 研究团队开发的基于深度 Q 学习网络 (DQN) 算法的医疗决策系统相比,我们的模型推荐的最佳剂量组合更接近专业临床医生的剂量组合。具体来说,与基于 DQN 算法的模型相比,我们的 AI 模型推荐的剂量完全相同的患者样本数量增加了 142.3%,患者死亡率降低了 2.58%。

结论:我们基于 DDPG 算法的医疗决策系统生成的治疗方案更接近专业人类临床医生的方案,住院脓毒症患者的死亡率更低,这可以更好地帮助人类临床医生应对 ICU 中脓毒症患者复杂的条件变化。我们提出的基于 AI 的医疗决策系统有可能为其他药物提供最佳参考剂量组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/c5647f8d49a8/12911_2023_2175_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/00facdc76c1c/12911_2023_2175_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/f85713e3d4a5/12911_2023_2175_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/6ae372d76a0c/12911_2023_2175_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/25e31fafcf64/12911_2023_2175_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/2252a9cfd621/12911_2023_2175_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/382dc850df91/12911_2023_2175_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/3f92a04409c9/12911_2023_2175_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/e4bfec15d415/12911_2023_2175_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/c5647f8d49a8/12911_2023_2175_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/00facdc76c1c/12911_2023_2175_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/f85713e3d4a5/12911_2023_2175_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/6ae372d76a0c/12911_2023_2175_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/25e31fafcf64/12911_2023_2175_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/2252a9cfd621/12911_2023_2175_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/382dc850df91/12911_2023_2175_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/3f92a04409c9/12911_2023_2175_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/e4bfec15d415/12911_2023_2175_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f416/10161635/c5647f8d49a8/12911_2023_2175_Fig9_HTML.jpg

相似文献

[1]
A dosing strategy model of deep deterministic policy gradient algorithm for sepsis patients.

BMC Med Inform Decis Mak. 2023-5-4

[2]
Learning dynamic treatment strategies for coronary heart diseases by artificial intelligence: real-world data-driven study.

BMC Med Inform Decis Mak. 2022-2-15

[3]
The development an artificial intelligence algorithm for early sepsis diagnosis in the intensive care unit.

Int J Med Inform. 2020-5-21

[4]
Reinforcement Learning to Optimize Ventilator Settings for Patients on Invasive Mechanical Ventilation: Retrospective Study.

J Med Internet Res. 2024-10-16

[5]
The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care.

Nat Med. 2018-10-22

[6]
Assuring the safety of AI-based clinical decision support systems: a case study of the AI Clinician for sepsis treatment.

BMJ Health Care Inform. 2022-7

[7]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[8]
Using artificial intelligence to predict adverse outcomes in emergency department patients with hyperglycemic crises in real time.

BMC Endocr Disord. 2023-10-24

[9]
Development and Validation of an Interpretable Conformal Predictor to Predict Sepsis Mortality Risk: Retrospective Cohort Study.

J Med Internet Res. 2024-3-18

[10]
Learning to predict in-hospital mortality risk in the intensive care unit with attention-based temporal convolution network.

BMC Anesthesiol. 2022-4-23

引用本文的文献

[1]
Exploring Stakeholder Perceptions about Using Artificial Intelligence for the Diagnosis of Rare and Atypical Infections.

Appl Clin Inform. 2025-1

本文引用的文献

[1]
Challenges and Solutions in translating sepsis guidelines into practice in resource-limited settings.

Transl Pediatr. 2021-10

[2]
Machine Learning Applications in Solid Organ Transplantation and Related Complications.

Front Immunol. 2021

[3]
A New Argument for No-Fault Compensation in Health Care: The Introduction of Artificial Intelligence Systems.

Health Care Anal. 2021-9

[4]
Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study.

Lancet. 2020-1-18

[5]
Critical Care, Critical Data.

Biomed Eng Comput Biol. 2019-6-12

[6]
The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care.

Nat Med. 2018-10-22

[7]
Epidemiology and Costs of Sepsis in the United States-An Analysis Based on Timing of Diagnosis and Severity Level.

Crit Care Med. 2018-12

[8]
Sepsis and septic shock.

Nat Rev Dis Primers. 2016-6-30

[9]
Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016.

Intensive Care Med. 2017-1-18

[10]
Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.

JAMA. 2016-12-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索