Suppr超能文献

头颈部放射治疗中每周磁共振成像的形态变化的自动跟踪。

Automated tracking of morphologic changes in weekly magnetic resonance imaging during head and neck radiotherapy.

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

出版信息

J Appl Clin Med Phys. 2023 Jul;24(7):e13959. doi: 10.1002/acm2.13959. Epub 2023 May 5.

Abstract

BACKGROUND AND PURPOSE

Anatomic changes during head and neck radiotherapy can impact dose delivery, necessitate adaptive replanning, and indicate patient-specific response to treatment. We have developed an automated system to track these changes through longitudinal MRI scans to aid identification and clinical intervention. The purpose of this article is to describe this tracking system and present results from an initial cohort of patients.

MATERIALS AND METHODS

The Automated Watchdog in Adaptive Radiotherapy Environment (AWARE) was developed to process longitudinal MRI data for radiotherapy patients. AWARE automatically identifies and collects weekly scans, propagates radiotherapy planning structures, computes structure changes over time, and reports important trends to the clinical team. AWARE also incorporates manual structure review and revision from clinical experts and dynamically updates tracking statistics when necessary. AWARE was applied to patients receiving weekly T2-weighted MRI scans during head and neck radiotherapy. Changes in nodal gross tumor volume (GTV) and parotid gland delineations were tracked over time to assess changes during treatment and identify early indicators of treatment response.

RESULTS

N = 91 patients were tracked and analyzed in this study. Nodal GTVs and parotids both shrunk considerably throughout treatment (-9.7 ± 7.7% and -3.7 ± 3.3% per week, respectively). Ipsilateral parotids shrunk significantly faster than contralateral (-4.3 ± 3.1% vs. -2.9 ± 3.3% per week, p = 0.005) and increased in distance from GTVs over time (+2.7 ± 7.2% per week, p < 1 × 10 ). Automatic structure propagations agreed well with manual revisions (Dice = 0.88 ± 0.09 for parotids and 0.80 ± 0.15 for GTVs), but for GTVs the agreement degraded 4-5 weeks after the start of treatment. Changes in GTV volume observed by AWARE as early as one week into treatment were predictive of large changes later in the course (AUC = 0.79).

CONCLUSION

AWARE automatically identified longitudinal changes in GTV and parotid volumes during radiotherapy. Results suggest that this system may be useful for identifying rapidly responding patients as early as one week into treatment.

摘要

背景与目的

头颈部放疗过程中的解剖结构变化会影响剂量分布,需要进行适应性重计划,并提示患者对治疗的特定反应。我们开发了一种自动系统,通过纵向 MRI 扫描来跟踪这些变化,以帮助识别和临床干预。本文的目的是描述该跟踪系统,并展示初始患者队列的结果。

材料与方法

自动化放疗环境中的自适应监测器(AWARE)是为处理放疗患者的纵向 MRI 数据而开发的。AWARE 自动识别并收集每周扫描,传播放疗计划结构,计算结构随时间的变化,并向临床团队报告重要趋势。AWARE 还结合了临床专家的手动结构审查和修订,并在必要时动态更新跟踪统计信息。AWARE 应用于每周接受 T2 加权 MRI 扫描的头颈部放疗患者。随着时间的推移,跟踪和分析淋巴结大体肿瘤体积(GTV)和腮腺描绘的变化,以评估治疗过程中的变化并确定治疗反应的早期指标。

结果

本研究共跟踪和分析了 91 例患者。GTV 和同侧腮腺在整个治疗过程中都显著缩小(每周分别减少 9.7±7.7%和-3.7±3.3%)。同侧腮腺的收缩速度明显快于对侧(每周分别减少-4.3±3.1%和-2.9±3.3%,p=0.005),并且随着时间的推移,与 GTV 的距离增加(每周增加 2.7±7.2%,p<1×10)。自动结构传播与手动修订吻合良好(腮腺的 Dice 值为 0.88±0.09,GTV 为 0.80±0.15),但在治疗开始后 4-5 周,一致性降低。AWARE 在治疗开始后仅 1 周即可观察到的 GTV 体积变化可预测后期的大变化(AUC=0.79)。

结论

AWARE 自动识别放疗过程中 GTV 和腮腺体积的纵向变化。结果表明,该系统可能有助于在治疗开始后 1 周内识别快速反应的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11dd/10338763/4dc448e24d0e/ACM2-24-e13959-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验