Medicine Design, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States.
Medicine Design, Pfizer Worldwide Research, Development, and Medical, 1 Portland St, Cambridge, Massachusetts 02139, United States.
Chem Res Toxicol. 2023 Jun 19;36(6):934-946. doi: 10.1021/acs.chemrestox.3c00054. Epub 2023 May 6.
We recently disclosed SAR studies on systemically acting, amide-based inhibitors of diacylglycerol acyltransferase 2 (DGAT2) that addressed metabolic liabilities with the liver-targeted DGAT2 inhibitor PF-06427878. Despite strategic placement of a nitrogen atom in the dialkoxyaromatic ring in PF-06427878 to evade oxidative -dearylation, metabolic intrinsic clearance remained high due to extensive piperidine ring oxidation as exemplified with compound . Piperidine ring modifications through alternate -linked heterocyclic ring/spacer combination led to azetidine that demonstrated lower intrinsic clearance. However, underwent a facile cytochrome P450 (CYP)-mediated α-carbon oxidation followed by azetidine ring scission, resulting in the formation of ketone (M2) and aldehyde (M6) as stable metabolites in NADPH-supplemented human liver microsomes. Inclusion of GSH or semicarbazide in microsomal incubations led to the formation of Cys-Gly-thiazolidine (M3), Cys-thiazolidine (M5), and semicarbazone (M7) conjugates, which were derived from reaction of the nucleophilic trapping agents with aldehyde M6. Metabolites M2 and M5 were biosynthesized from NADPH- and l-cysteine-fortified human liver microsomal incubations with , and proposed metabolite structures were verified using one- and two-dimensional NMR spectroscopy. Replacement of the azetidine substituent with a pyridine ring furnished , which mitigated the formation of the electrophilic aldehyde metabolite, and was a more potent DGAT2 inhibitor than . Further structural refinements in , specifically introducing amide bond substituents with greater metabolic stability, led to the discovery of PF-06865571 (ervogastat) that is currently in phase 2 clinical trials for the treatment of nonalcoholic steatohepatitis.
我们最近披露了系统作用的基于酰胺的二酰基甘油酰基转移酶 2(DGAT2)抑制剂的 SAR 研究,这些抑制剂解决了与肝靶向 DGAT2 抑制剂 PF-06427878 相关的代谢缺陷。尽管 PF-06427878 中在二烷氧基芳环中战略性地放置了一个氮原子以避免氧化去酰化,但由于广泛的哌啶环氧化,代谢固有清除率仍然很高,这在化合物 中得到了例证。通过替代 -连接的杂环/间隔物组合对哌啶环进行修饰,导致氮杂环丁烷 ,其固有清除率较低。然而, 易于发生细胞色素 P450(CYP)介导的α-碳原子氧化,随后氮杂环丁烷环断裂,导致在 NADPH 补充的人肝微粒体中形成酮(M2)和醛(M6)作为稳定代谢物。在微粒体孵育中包含 GSH 或氨基脲导致形成半胱氨酸-甘氨酸噻唑烷(M3)、半胱氨酸噻唑烷(M5)和氨基脲(M7)缀合物,这些缀合物是由亲核捕获剂与醛 M6 反应形成的。代谢物 M2 和 M5 是通过 NADPH 和 l-半胱氨酸强化的 与 人肝微粒体孵育生物合成的,并使用一维和二维 NMR 光谱验证了提议的代谢物结构。用吡啶环取代氮杂环丁烷取代基得到 ,其减轻了亲电醛代谢物的形成,并且比 更有效抑制 DGAT2。在 中进一步进行结构细化,特别是引入具有更高代谢稳定性的酰胺键取代基,导致发现了目前正在非酒精性脂肪性肝炎治疗的 2 期临床试验中的 PF-06865571(ervogastat)。