Suppr超能文献

弥散-弛豫相关谱成像预测垂体腺瘤患者肿瘤硬度和大体全切除的初步研究。

Diffusion-relaxation correlation spectrum imaging for predicting tumor consistency and gross total resection in patients with pituitary adenomas: a preliminary study.

机构信息

Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guang Zhou Road, Gulou District, Nanjing, 210029, Jiangsu Province, China.

Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.

出版信息

Eur Radiol. 2023 Oct;33(10):6993-7002. doi: 10.1007/s00330-023-09694-x. Epub 2023 May 6.

Abstract

OBJECTIVE

To evaluate the ability of diffusion-relaxation correlation spectrum imaging (DR-CSI) to predict the consistency and extent of resection (EOR) of pituitary adenomas (PAs).

METHODS

Forty-four patients with PAs were prospectively enrolled. Tumor consistency was evaluated at surgery as either soft or hard, followed by histological assessment. In vivo DR-CSI was performed and spectra were segmented following to a peak-based strategy into four compartments, designated A (low ADC), B (mediate ADC, short T2), C (mediate ADC, long T2), and D (high ADC). The corresponding volume fractions ([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]) along with the ADC and T2 values were calculated and assessed using univariable analysis for discrimination between hard and soft PAs. Predictors of EOR > 95% were analyzed using logistic regression model and receiver-operating-characteristic analysis.

RESULTS

Tumor consistency was classified as soft (n = 28) or hard (n = 16). Hard PAs presented higher [Formula: see text] (p = 0.001) and lower [Formula: see text] (p = 0.013) than soft PAs, while no significant difference was found in other parameters. [Formula: see text] significantly correlated with the level of collagen content (r = 0.448, p = 0.002). Knosp grade (odds ratio [OR], 0.299; 95% confidence interval [CI], 0.124-0.716; p = 0.007) and [Formula: see text] (OR, 0.834, per 1% increase; 95% CI, 0.731-0.951; p = 0.007) were independently associated with EOR > 95%. A prediction model based on these variables yielded an AUC of 0.934 (sensitivity, 90.9%; specificity, 90.9%), outperforming the Knosp grade alone (AUC, 0.785; p < 0.05).

CONCLUSION

DR-CSI may serve as a promising tool to predict the consistency and EOR of PAs.

CLINICAL RELEVANCE STATEMENT

DR-CSI provides an imaging dimension for characterizing tissue microstructure of PAs and may serve as a promising tool to predict the tumor consistency and extent of resection in patients with PAs.

KEY POINTS

• DR-CSI provides an imaging dimension for characterizing tissue microstructure of PAs by visualizing the volume fraction and corresponding spatial distribution of four compartments ([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]). • [Formula: see text] correlated with the level of collagen content and may be the best DR-CSI parameter for discrimination between hard and soft PAs. • The combination of Knosp grade and [Formula: see text] achieved an AUC of 0.934 for predicting the total or near-total resection, outperforming the Knosp grade alone (AUC, 0.785).

摘要

目的

评估弥散-弛豫相关谱成像(DR-CSI)预测垂体腺瘤(PA)一致性和切除程度(EOR)的能力。

方法

前瞻性纳入 44 例 PA 患者。术中评估肿瘤质地为软或硬,并进行组织学评估。进行体内 DR-CSI,根据基于峰的策略将光谱分割成四个隔室,分别为 A(低 ADC)、B(中 ADC、短 T2)、C(中 ADC、长 T2)和 D(高 ADC)。计算并评估相应的体积分数([Formula: see text]、[Formula: see text]、[Formula: see text]、[Formula: see text])以及 ADC 和 T2 值,采用单变量分析来区分软硬 PA。使用逻辑回归模型和受试者工作特征分析来分析 EOR>95%的预测因子。

结果

肿瘤质地分为软(n=28)或硬(n=16)。硬 PA 的 [Formula: see text]更高(p=0.001),[Formula: see text]更低(p=0.013),而其他参数无显著差异。[Formula: see text]与胶原含量水平显著相关(r=0.448,p=0.002)。Knosp 分级(比值比[OR],0.299;95%置信区间[CI],0.124-0.716;p=0.007)和 [Formula: see text](OR,每增加 1%为 0.834;95%CI,0.731-0.951;p=0.007)与 EOR>95%独立相关。基于这些变量的预测模型的 AUC 为 0.934(灵敏度,90.9%;特异性,90.9%),优于单独的 Knosp 分级(AUC,0.785;p<0.05)。

结论

DR-CSI 可作为预测 PA 一致性和 EOR 的有前途的工具。

临床相关性声明

DR-CSI 为 PA 的组织微观结构特征提供了一种成像维度,可作为预测 PA 患者肿瘤一致性和切除程度的有前途的工具。

关键点

  • DR-CSI 通过可视化四个隔室的体积分数和相应的空间分布([Formula: see text]、[Formula: see text]、[Formula: see text]、[Formula: see text]),为 PA 的组织微观结构特征提供了一种成像维度。

  • [Formula: see text]与胶原含量水平显著相关,可能是区分软硬 PA 的最佳 DR-CSI 参数。

  • Knosp 分级和 [Formula: see text]的组合对预测完全或接近完全切除的 AUC 为 0.934,优于单独的 Knosp 分级(AUC,0.785)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验