Department of Nuclear Medicine, Université de Lorraine, CHRU Nancy, F-54000, Nancy, France.
Université de Lorraine, IADI, INSERM U1254, F-54000, Nancy, France.
Eur Radiol. 2023 Oct;33(10):7089-7098. doi: 10.1007/s00330-023-09697-8. Epub 2023 May 6.
Tumor dosimetry with somatostatin receptor-targeted peptide receptor radionuclide therapy (SSTR-targeted PRRT) by Lu-DOTATATE may contribute to improved treatment monitoring of refractory meningioma. Accurate dosimetry requires reliable and reproducible pretherapeutic PET tumor segmentation which is not currently available. This study aims to propose semi-automated segmentation methods to determine metabolic tumor volume with pretherapeutic Ga-DOTATOC PET and evaluate SUV-derived values as predictive factors for tumor-absorbed dose.
Thirty-nine meningioma lesions from twenty patients were analyzed. The ground truth PET and SPECT volumes (Vol and Vol) were computed from manual segmentations by five experienced nuclear physicians. SUV-related indexes were extracted from Vol and the semi-automated PET volumes providing the best Dice index with Vol (Vol) across several methods: SUV absolute-value (2.3)-threshold, adaptative methods (Jentzen, Otsu, Contrast-based method), advanced gradient-based technique, and multiple relative thresholds (% of tumor SUV, hypophysis SUV, and meninges SUV) with optimal threshold optimized. Tumor-absorbed doses were obtained from the Vol, corrected for partial volume effect, performed on a 360° whole-body CZT-camera at 24, 96, and 168 h after administration of Lu-DOTATATE.
Vol was obtained from 1.7-fold meninges SUV (Dice index 0.85 ± 0.07). SUV and total lesion uptake (SUVxlesion volume) showed better correlations with tumor-absorbed doses than SUV when determined with the Vol (respective Pearson correlation coefficients of 0.78, 0.67, and 0.56) or Vol (0.64, 0.66, and 0.56).
Accurate definition of pretherapeutic PET volumes is justified since SUV-derived values provide the best tumor-absorbed dose predictions in refractory meningioma patients treated by Lu-DOTATATE. This study provides a semi-automated segmentation method of pretherapeutic Ga-DOTATOC PET volumes to achieve good reproducibility between physicians.
SUV-derived values from pretherapeutic Ga-DOTATOC PET are predictive of tumor-absorbed doses in refractory meningiomas treated by Lu-DOTATATE, justifying to accurately define pretherapeutic PET volumes. This study provides a semi-automated segmentation of Ga-DOTATOC PET images easily applicable in routine.
• SUV-derived values from pretherapeutic Ga-DOTATOC PET images provide the best predictive factors of tumor-absorbed doses related to Lu-DOTATATE PRRT in refractory meningioma. • A 1.7-fold meninges SUV segmentation method used to determine metabolic tumor volume on pretherapeutic Ga-DOTATOC PET images of refractory meningioma treated by Lu-DOTATATE is as efficient as the currently routine manual segmentation method and limits inter- and intra-observer variabilities. • This semi-automated method for segmentation of refractory meningioma is easily applicable to routine practice and transferrable across PET centers.
使用 Lu-DOTATATE 进行生长抑素受体靶向肽受体放射性核素治疗(SSTR 靶向 PRRT)的肿瘤剂量测定可能有助于改善复发性脑膜瘤的治疗监测。准确的剂量测定需要可靠且可重复的治疗前 PET 肿瘤分割,目前尚不可用。本研究旨在提出半自动化分割方法,以确定治疗前 Ga-DOTATOC PET 的代谢肿瘤体积,并评估 SUV 衍生值作为肿瘤吸收剂量的预测因子。
对 20 名患者的 39 个脑膜瘤病变进行了分析。通过五名有经验的核医学医师的手动分割,计算了地面真实 PET 和 SPECT 体积(Vol 和 Vol)。从 Vol 和提供与 Vol 最佳 Dice 指数的半自动化 PET 体积中提取了与 SUV 相关的指标(通过几种方法的 2.3 倍肿瘤 SUV 绝对值(SUV 绝对 - 值)- 阈值、适应方法(Jentzen、Otsu、基于对比度的方法)、高级基于梯度的技术和多个相对阈值(肿瘤 SUV 的百分比、垂体 SUV 和脑膜 SUV),最佳阈值进行优化)。从 Vol 获得肿瘤吸收剂量,对体积进行了部分容积效应校正,在 Lu-DOTATATE 给药后 24、96 和 168 小时,使用 360°全身 CZT 相机进行了校正。
Vol 来自于 1.7 倍脑膜 SUV(Dice 指数 0.85±0.07)。与 Vol (分别为 0.78、0.67 和 0.56 的 Pearson 相关系数)或 Vol (0.64、0.66 和 0.56)确定的 SUV 和总病变摄取(SUVx 病变体积)与肿瘤吸收剂量的相关性优于 SUV。
在 Lu-DOTATATE 治疗的复发性脑膜瘤患者中,准确定义治疗前的 PET 体积是合理的,因为 SUV 衍生值可提供 Lu-DOTATATE 治疗患者最佳的肿瘤吸收剂量预测。本研究提供了一种治疗前 Ga-DOTATOC PET 体积的半自动分割方法,可在医师之间实现良好的可重复性。
治疗前 Ga-DOTATOC PET 中的 SUV 衍生值可预测 Lu-DOTATATE 治疗的复发性脑膜瘤的肿瘤吸收剂量,这证明了准确定义治疗前的 PET 体积是合理的。本研究提供了一种易于在常规中应用的 Ga-DOTATOC PET 图像半自动分割方法。
• 来自治疗前 Ga-DOTATOC PET 图像的 SUV 衍生值是 Lu-DOTATATE PRRT 治疗复发性脑膜瘤相关肿瘤吸收剂量的最佳预测因子。• 用于确定 Lu-DOTATATE 治疗复发性脑膜瘤的治疗前 Ga-DOTATOC PET 图像代谢肿瘤体积的 1.7 倍脑膜 SUV 分割方法与目前常规的手动分割方法一样有效,并且限制了观察者间和观察者内的变异性。• 这种复发性脑膜瘤的半自动分割方法易于在常规实践中应用,并可在 PET 中心之间转移。