Suppr超能文献

电活性生物膜的作用机制和工程学研究进展。

Advances in mechanisms and engineering of electroactive biofilms.

机构信息

Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, China.

出版信息

Biotechnol Adv. 2023 Sep;66:108170. doi: 10.1016/j.biotechadv.2023.108170. Epub 2023 May 4.

Abstract

Electroactive biofilms (EABs) are electroactive microorganisms (EAMs) encased in conductive polymers that are secreted by EAMs and formed by the accumulation and cross-linking of extracellular polysaccharides, proteins, nucleic acids, lipids, and other components. EABs are present in the form of multicellular aggregates and play a crucial role in bioelectrochemical systems (BESs) for diverse applications, including biosensors, microbial fuel cells for renewable bioelectricity production and remediation of wastewaters, and microbial electrosynthesis of valuable chemicals. However, naturally occurred EABs are severely limited owing to their low electrical conductivity that seriously restrict the electron transfer efficiency and practical applications. In the recent decade, synthetic biology strategies have been adopted to elucidate the regulatory mechanisms of EABs, and to enhance the formation and electrical conductivity of EABs. Based on the formation of EABs and extracellular electron transfer (EET) mechanisms, the synthetic biology-based engineering strategies of EABs are summarized and reviewed as follows: (i) Engineering the structural components of EABs, including strengthening the synthesis and secretion of structural elements such as polysaccharides, eDNA, and structural proteins, to improve the formation of biofilms; (ii) Enhancing the electron transfer efficiency of EAMs, including optimizing the distribution of c-type cytochromes and conducting nanowire assembly to promote contact-based EET, and enhancing electron shuttles' biosynthesis and secretion to promote shuttle-mediated EET; (iii) Incorporating intracellular signaling molecules in EAMs, including quorum sensing systems, secondary messenger systems, and global regulatory systems, to increase the electron transfer flux in EABs. This review lays a foundation for the design and construction of EABs for diverse BESs applications.

摘要

电活性生物膜(EABs)是被电活性微生物(EAMs)分泌的导电聚合物包裹的电活性微生物,由细胞外多糖、蛋白质、核酸、脂质和其他成分的积累和交联形成。EABs 以多细胞聚集体的形式存在,在生物电化学系统(BESs)中发挥着至关重要的作用,可应用于生物传感器、微生物燃料电池以可再生生物电能生产和废水修复,以及微生物电化学合成有价值的化学品。然而,由于其自然发生的 EABs 电导率较低,严重限制了电子转移效率和实际应用,因此受到严重限制。在过去的十年中,合成生物学策略已被用于阐明 EABs 的调控机制,并增强 EABs 的形成和电导率。基于 EABs 的形成和细胞外电子传递(EET)机制,综述了基于合成生物学的 EABs 工程策略,如下:(i)工程化 EABs 的结构组成,包括增强多糖、eDNA 和结构蛋白等结构元件的合成和分泌,以改善生物膜的形成;(ii)提高 EAMs 的电子传递效率,包括优化 c 型细胞色素的分布和导电纳米线的组装以促进基于接触的 EET,以及增强电子穿梭物的生物合成和分泌以促进穿梭介导的 EET;(iii)在 EAMs 中纳入细胞内信号分子,包括群体感应系统、次级信使系统和全局调控系统,以增加 EABs 中的电子传递通量。本综述为不同 BESs 应用的 EABs 的设计和构建奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验