原位自由基反应修饰的具有巨噬细胞逃逸和延长成像的碳点纳米胶囊。
In Situ Radical Reaction-Modified Carbon Dot Nanocapsules with Macrophage Escape and Prolonged Imaging.
机构信息
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
School of Mechanical Science Engineering, Jilin University, Changchun, 130012, China.
出版信息
Macromol Rapid Commun. 2023 Sep;44(17):e2300188. doi: 10.1002/marc.202300188. Epub 2023 Jun 21.
Carbon dots (CDs) have emerged as an extremely promising platform for biological imaging, owing to their optical properties and low toxicity. However, one of the major challenges in utilizing CDs for in vivo imaging is their high immunogenicity and rapid clearance, which limits their potential. Herein, a novel approach for mitigating these issues is presented through the development of carbon dot nanocapsules (nCDs). Specifically, CDs are encapsulated within a zwitterionic polymer shell composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) to create nCDs with a size of ≈40 nm. Notably, the nCDs exhibit excitation-dependent photoluminescence behavior in the range of 550-600 nm, with tunability based on the excitation wavelength. In confocal imaging, CDs display a strong fluorescence signal after 8 h of incubation with phagocytes, while nCDs show minimal signal, suggesting that nCDs may be capable of evading phagocyte uptake. Furthermore, imaging studies in zebrafish demonstrate that nCDs exhibit a retention time >10 times longer than that of CDs, with fluorescence intensity remaining at 81% after 10 h compared to only 8% for CDs. Taken together, the study presents a novel approach for enhancing the performance of CDs in in vivo imaging applications, offering significant potential for clinical translation.
碳点(CDs)由于其光学性质和低毒性,已成为生物成像极具前景的平台。然而,将 CDs 用于体内成像的主要挑战之一是其高度的免疫原性和快速清除,这限制了其潜力。本文提出了一种通过开发碳点纳米胶囊(nCDs)来缓解这些问题的新方法。具体而言,将 CDs 封装在由 2-(甲基丙烯酰氧基)乙基磷酸胆碱(MPC)组成的两性离子聚合物壳中,以制造出 ≈40nm 的 nCDs。值得注意的是,nCDs 在 550-600nm 范围内表现出激发依赖性的光致发光行为,可根据激发波长进行调谐。在共聚焦成像中,CDs 在与吞噬细胞孵育 8 小时后显示出强烈的荧光信号,而 nCDs 则显示出最小的信号,表明 nCDs 可能能够逃避吞噬细胞的摄取。此外,在斑马鱼中的成像研究表明,nCDs 的保留时间比 CDs 长 10 倍以上,在 10 小时后荧光强度保持在 81%,而 CDs 仅为 8%。综上所述,该研究提出了一种增强 CDs 在体内成像应用中性能的新方法,为临床转化提供了巨大的潜力。