Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
Department of Biomedical Physics, Institute of Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
Biochim Biophys Acta Gen Subj. 2023 Aug;1867(8):130376. doi: 10.1016/j.bbagen.2023.130376. Epub 2023 May 5.
In plants, microRNA biogenesis involves the complex assembly of molecular processes that are mostly governed by three proteins: RNase III protein DCL1 and two RNA binding proteins, SERRATE and HYL1. HYL1 protein is a double stranded RNA binding protein that is needed for the precise excision of miRNA/miRNA* duplex from the stem-loop containing primary miRNA gene transcripts. Moreover, HYL1 protein partners with HSP90 and CARP9 proteins to load the miRNA molecules onto the AGO1 endonuclease. HYL1 protein as a crucial player in the biogenesis pathway is regulated by its phosphorylation status to fine tune the levels of miRNA in various physiological conditions. HYL1 protein consists of two dsRNA binding domains (dsRBD) that are involved in RNA binding and dimerization and a C-terminal disordered tail of unknown function. Although the spatial structures of the individual dsRBDs have been determined there is a lack of information about the behaviour and structure of the full length protein. Using small the angle X-ray scattering (SAXS) technique we investigated the structure and dynamic of the HYL1 protein from Arabidopsis thaliana in solution. We show that the C-terminal domain is disordered and dynamic in solution and that HYL1 protein dimerization is dependent on the concentration. HYL1 protein lacking a C-terminal tail and a nuclear localisation signal (NLS) fragment is almost exclusively monomeric and similarly to full-length protein has a dynamic nature in solution. Our results point for the first time to the role of the C-terminal fragment in stabilisation of HYL1 dimer formation.
在植物中,microRNA 的生物发生涉及到分子过程的复杂组装,这些过程主要由三种蛋白质控制:RNase III 蛋白 DCL1 和两个 RNA 结合蛋白 SERRATE 和 HYL1。HYL1 蛋白是一种双链 RNA 结合蛋白,对于从包含初级 miRNA 基因转录本的茎环结构中精确切除 miRNA/miRNA*双链体是必需的。此外,HYL1 蛋白与 HSP90 和 CARP9 蛋白合作,将 miRNA 分子加载到 AGO1 内切酶上。HYL1 蛋白作为生物发生途径中的关键参与者,其磷酸化状态受到调控,以精细调节各种生理条件下的 miRNA 水平。HYL1 蛋白由两个双链 RNA 结合域(dsRBD)组成,这些结构域参与 RNA 结合和二聚化,以及一个未知功能的 C 端无规卷曲尾。尽管已经确定了各个 dsRBD 的空间结构,但关于全长蛋白的行为和结构的信息仍然缺乏。我们使用小角 X 射线散射(SAXS)技术研究了拟南芥 HYL1 蛋白在溶液中的结构和动态。我们表明,C 端结构域在溶液中是无序和动态的,并且 HYL1 蛋白二聚化依赖于浓度。缺乏 C 端尾部和核定位信号(NLS)片段的 HYL1 蛋白几乎完全是单体的,并且与全长蛋白一样,在溶液中具有动态性质。我们的结果首次指出 C 端片段在稳定 HYL1 二聚体形成中的作用。