Suppr超能文献

内在无序蛋白CARP9在细胞核中将HYL1与AGO1连接起来以促进微小RNA活性。

The Intrinsically Disordered Protein CARP9 Bridges HYL1 to AGO1 in the Nucleus to Promote MicroRNA Activity.

作者信息

Tomassi Ariel H, Re Delfina A, Romani Facundo, Cambiagno Damian A, Gonzalo Lucía, Moreno Javier E, Arce Agustin L, Manavella Pablo A

机构信息

Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, 3000 Santa Fe, Argentina.

Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, 3000 Santa Fe, Argentina

出版信息

Plant Physiol. 2020 Sep;184(1):316-329. doi: 10.1104/pp.20.00258. Epub 2020 Jul 7.

Abstract

In plants, small RNAs are loaded into ARGONAUTE (AGO) proteins to fulfill their regulatory functions. MicroRNAs (miRNAs), one of the most abundant classes of endogenous small RNAs, are preferentially loaded into AGO1. Such loading, long believed to happen exclusively in the cytoplasm, was recently proposed to also occur in the nucleus. Here, we identified CONSTITUTIVE ALTERATIONS IN THE SMALL RNAS PATHWAYS9 (CARP9), a nuclear-localized, intrinsically disordered protein, as a factor promoting miRNA activity in Arabidopsis (). Mutations in the CARP9-encoding gene led to a mild reduction of miRNAs levels, impaired gene silencing, and characteristic morphological defects, including young leaf serration and altered flowering time. Intriguingly, we found that CARP9 was able to interact with HYPONASTIC LEAVES1 (HYL1), but not with other proteins of the miRNA biogenesis machinery. In the same way, CARP9 appeared to interact with mature miRNA, but not with primary miRNA, positioning it after miRNA processing in the miRNA pathway. CARP9 was also able to interact with AGO1, promoting its interaction with HYL1 to facilitate miRNA loading in AGO1. Plants deficient in CARP9 displayed reduced levels of AGO1-loaded miRNAs, partial retention of miRNA in the nucleus, and reduced levels of AGO1. Collectively, our data suggest that CARP9 might modulate HYL1-AGO1 cross talk, acting as a scaffold for the formation of a nuclear post-primary miRNA-processing complex that includes at least HYL1, AGO1, and HEAT SHOCK PROTEIN 90. In such a complex, CARP9 stabilizes AGO1 and mature miRNAs, allowing the proper loading of miRNAs in the effector complex.

摘要

在植物中,小RNA被装载到AGO(AGO)蛋白中以实现其调控功能。微小RNA(miRNA)是最丰富的内源性小RNA类别之一,优先装载到AGO1中。长期以来,人们一直认为这种装载仅在细胞质中发生,最近有人提出它也发生在细胞核中。在这里,我们鉴定了小RNA途径9(CARP9)中的组成性改变,这是一种定位于细胞核的内在无序蛋白,是促进拟南芥中miRNA活性的一个因子。编码CARP9的基因突变导致miRNA水平轻度降低、基因沉默受损以及特征性形态缺陷,包括幼叶锯齿状和开花时间改变。有趣的是,我们发现CARP9能够与叶片下弯1(HYL1)相互作用,但不能与miRNA生物发生机制中的其他蛋白质相互作用。同样,CARP9似乎与成熟miRNA相互作用,但不与初级miRNA相互作用,这表明它在miRNA途径中的miRNA加工之后发挥作用。CARP9还能够与AGO1相互作用,促进其与HYL1的相互作用,以促进miRNA装载到AGO1中。缺乏CARP9的植物显示AGO1装载的miRNA水平降低、miRNA在细胞核中的部分保留以及AGO1水平降低。总体而言,我们的数据表明CARP9可能调节HYL1-AGO1的相互作用,作为形成至少包括HYL1、AGO1和热休克蛋白90的核初级miRNA加工后复合物的支架。在这样的复合物中,CARP9稳定AGO1和成熟miRNA,允许miRNA在效应复合物中正确装载。

相似文献

1
The Intrinsically Disordered Protein CARP9 Bridges HYL1 to AGO1 in the Nucleus to Promote MicroRNA Activity.
Plant Physiol. 2020 Sep;184(1):316-329. doi: 10.1104/pp.20.00258. Epub 2020 Jul 7.
2
Cytoplasmic HYL1 modulates miRNA-mediated translational repression.
Plant Cell. 2021 Jul 19;33(6):1980-1996. doi: 10.1093/plcell/koab090.
5
KETCH1 imports HYL1 to nucleus for miRNA biogenesis in .
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):4011-4016. doi: 10.1073/pnas.1619755114. Epub 2017 Mar 27.
6
TRANSPORTIN1 Promotes the Association of MicroRNA with ARGONAUTE1 in Arabidopsis.
Plant Cell. 2016 Oct;28(10):2576-2585. doi: 10.1105/tpc.16.00384. Epub 2016 Sep 23.
7
Transcriptome analyses revealed diverse expression changes in ago1 and hyl1 Arabidopsis mutants.
Plant Cell Physiol. 2009 Sep;50(9):1715-20. doi: 10.1093/pcp/pcp109. Epub 2009 Jul 24.
8
Solution structure and behaviour of the Arabidopsis thaliana HYL1 protein.
Biochim Biophys Acta Gen Subj. 2023 Aug;1867(8):130376. doi: 10.1016/j.bbagen.2023.130376. Epub 2023 May 5.
10
The N-terminal extension of Arabidopsis ARGONAUTE 1 is essential for microRNA activities.
PLoS Genet. 2023 Mar 8;19(3):e1010450. doi: 10.1371/journal.pgen.1010450. eCollection 2023 Mar.

引用本文的文献

1
Plant microRNA maturation and function.
Nat Rev Mol Cell Biol. 2025 Jul 18. doi: 10.1038/s41580-025-00871-y.
2
Integrated expression analysis to elucidate the role of miR394 during flowering in Arabidopsis thaliana.
Plant Cell Rep. 2025 Jul 2;44(7):167. doi: 10.1007/s00299-025-03541-7.
3
Scalable Approach to Evaluate Plant microRNA Trimming and Tailing from Small RNA-Seq Data.
Methods Mol Biol. 2025;2900:91-106. doi: 10.1007/978-1-0716-4398-3_5.
6
Noncoding RNAs as tools for advancing translational biology in plants.
Plant Cell. 2025 May 9;37(5). doi: 10.1093/plcell/koaf054.
7
The PpPep2-Triggered PTI-like Response in Peach Trees Is Mediated by miRNAs.
Int J Mol Sci. 2024 Dec 5;25(23):13099. doi: 10.3390/ijms252313099.
8
Citrus psorosis virus 24K protein inhibits the processing of miRNA precursors by interacting with components of the biogenesis machinery.
Microbiol Spectr. 2024 Jul 2;12(7):e0351323. doi: 10.1128/spectrum.03513-23. Epub 2024 May 24.
9
A novel and ubiquitous miRNA-involved regulatory module ensures precise phosphorylation of RNA polymerase II and proper transcription.
PLoS Pathog. 2024 Apr 19;20(4):e1012138. doi: 10.1371/journal.ppat.1012138. eCollection 2024 Apr.
10
How intrinsically disordered proteins order plant gene silencing.
Trends Genet. 2024 Mar;40(3):260-275. doi: 10.1016/j.tig.2023.12.009. Epub 2024 Jan 30.

本文引用的文献

1
CURLY LEAF Regulates MicroRNA Activity by Controlling ARGONAUTE 1 Degradation in Plants.
Mol Plant. 2020 Jan 6;13(1):72-87. doi: 10.1016/j.molp.2019.10.003. Epub 2019 Oct 10.
3
Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes.
Nature. 2019 May;569(7755):265-269. doi: 10.1038/s41586-019-1165-8. Epub 2019 May 1.
4
Keep calm and carry on: miRNA biogenesis under stress.
Plant J. 2019 Sep;99(5):832-843. doi: 10.1111/tpj.14369. Epub 2019 May 23.
5
Alternative use of miRNA-biogenesis co-factors in plants at low temperatures.
Development. 2019 Mar 1;146(5):dev172932. doi: 10.1242/dev.172932.
6
InterPro in 2019: improving coverage, classification and access to protein sequence annotations.
Nucleic Acids Res. 2019 Jan 8;47(D1):D351-D360. doi: 10.1093/nar/gky1100.
7
The Pfam protein families database in 2019.
Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432. doi: 10.1093/nar/gky995.
8
Efficiency and precision of microRNA biogenesis modes in plants.
Nucleic Acids Res. 2018 Nov 16;46(20):10709-10723. doi: 10.1093/nar/gky853.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验