Suppr超能文献

使用STarT MSK筛查工具预测肌肉骨骼疼痛患者的持续性残疾:一项前瞻性队列研究的结果

Predicting persisting disability in musculoskeletal pain patients with the STarT MSK screening tool: Results from a prospective cohort study.

作者信息

Nativ Noam, Pincus Tamar, Hill Jonathan, Ben Ami Noa

机构信息

Department of Physiotherapy, Ariel University, Ariel, Israel.

Department of Physiotherapy, Maccabi Healthcare Services, Tel Aviv, Israel.

出版信息

Musculoskeletal Care. 2023 Dec;21(4):1005-1010. doi: 10.1002/msc.1776. Epub 2023 May 7.

Abstract

BACKGROUND

The STarT MSK screening tool aims to categorise musculoskeletal patients into three risk groups for treatment stratification. The tool has been translated and validated into Hebrew. However, its ability to predict persistent disability in patients has yet to be evaluated.

OBJECTIVE

The primary aim of this study was to assess the ability of the Hebrew version of the STarT MSK tool to predict persistent disability in patients experiencing musculoskeletal pain.

METHODS

A prospective observational cohort study was conducted, recruiting 135 patients with musculoskeletal pain in five common areas: back, neck, shoulder, knee, or multisite pain over the age of 21. At the first consultation, all patients completed demographic information, the Focus On Therapeutic Outcomes (FOTO) questionnaire (function, pain, and fear avoidance score), and the STarT MSK questionnaire. The patients completed the FOTO questionnaire again at the end of the physiotherapy treatments.

RESULTS

25 patients (18.5%) were classified into the low-risk group, 68 patients (50.3%) into the medium-risk group, and 42 (31.1%) into the high-risk group. The baseline STarT MSK tool score demonstrated an excellent ability to identify patients at high risk of developing persistent disability (AUC = 0.795, 95% CI 0.716-0.873).

CONCLUSIONS

The Hebrew version of the STarT MSK tool can differentiate between three chronic risk groups and has high predictive validity for chronicity. This may provide a tool to assist clinicians in identifying patients who require more intensive care, and thus, potentially prevent the transition to chronic disabling pain.

摘要

背景

STarT MSK筛查工具旨在将肌肉骨骼疾病患者分为三个风险组,以便进行治疗分层。该工具已被翻译成希伯来语并进行了验证。然而,其预测患者持续性残疾的能力尚未得到评估。

目的

本研究的主要目的是评估希伯来语版STarT MSK工具预测肌肉骨骼疼痛患者持续性残疾的能力。

方法

进行了一项前瞻性观察队列研究,招募了135名21岁以上在五个常见部位(背部、颈部、肩部、膝盖或多部位疼痛)患有肌肉骨骼疼痛的患者。在首次会诊时,所有患者完成了人口统计学信息、聚焦治疗结果(FOTO)问卷(功能、疼痛和恐惧回避评分)以及STarT MSK问卷。患者在物理治疗结束时再次完成FOTO问卷。

结果

25名患者(18.5%)被分类为低风险组,68名患者(50.3%)为中等风险组,42名患者(31.1%)为高风险组。基线STarT MSK工具评分显示出识别有持续性残疾高风险患者的出色能力(AUC = 0.795,95% CI 0.716 - 0.873)。

结论

希伯来语版STarT MSK工具可以区分三个慢性风险组,并且对慢性疾病具有较高的预测效度。这可能为临床医生提供一种工具,以帮助识别需要更强化护理的患者,从而有可能防止转变为慢性致残性疼痛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验