Suppr超能文献

用于高效电化学检测抗坏血酸的钒酸铁纳米棒的合成与表征

Synthesis and Characterization of Ferric Vanadate Nanorods for Efficient Electrochemical Detection of Ascorbic Acid.

作者信息

Anwar Nadia, Sajid Muhammad Munir, Iqbal Muhammad Aamir, Zhai Haifa, Ahmed Muqarrab, Anwar Bushra, Morsy Kareem, Capangpangan Rey Y, Alguno Arnold C, Choi Jeong Ryeol

机构信息

School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, China.

出版信息

ACS Omega. 2023 Apr 21;8(17):15450-15457. doi: 10.1021/acsomega.3c00715. eCollection 2023 May 2.

Abstract

This study reports the synthesis of ferric vanadate (FeVO) via a facile hydrothermal method, focusing on demonstrating its exceptional electrochemical (EC) properties on detecting low-density ascorbic acid (AA). The phase purity, crystallinity, structure, morphology, and chemical compositional properties were characterized by employing X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy techniques. EC impedance spectroscopy and cyclic voltammetry techniques were also adopted in order to assess the EC response of a FeVO-modified glassy carbon electrode for sensing AA at room temperature. The AA concentration range adopted in this experiment is 0.1-0.3 mM at a working electric potential of -0.13 V. The result showed functional excellence of this material for the EC determination of AA with good stability and reproducibility, promising its potentiality in connection with relevant sensing applications.

摘要

本研究报告了通过简便的水热法合成钒酸铁(FeVO),重点展示其在检测低密度抗坏血酸(AA)方面卓越的电化学(EC)性能。采用X射线衍射、能量色散X射线光谱、扫描电子显微镜、拉曼光谱和X射线光电子能谱技术对其相纯度、结晶度、结构、形态和化学成分性质进行了表征。还采用了EC阻抗谱和循环伏安法技术,以评估FeVO修饰玻碳电极在室温下传感AA的EC响应。本实验采用的AA浓度范围为0.1 - 0.3 mM,工作电势为 - 0.13 V。结果表明,该材料在EC测定AA方面功能优异,具有良好的稳定性和重现性,有望在相关传感应用中发挥潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e1/10157664/ec2822986a64/ao3c00715_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验