Popovic David, Wertz Maximilian, Geisler Carolin, Kaufmann Joern, Lähteenvuo Markku, Lieslehto Johannes, Witzel Joachim, Bogerts Bernhard, Walter Martin, Falkai Peter, Koutsouleris Nikolaos, Schiltz Kolja
Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany.
Department of Forensic Psychiatry, Ludwig-Maximilians-University Munich, Munich, Germany.
Front Psychiatry. 2023 Apr 20;14:1001085. doi: 10.3389/fpsyt.2023.1001085. eCollection 2023.
Child sexual abuse (CSA) has become a focal point for lawmakers, law enforcement, and mental health professionals. With high prevalence rates around the world and far-reaching, often chronic, individual, and societal implications, CSA and its leading risk factor, pedophilia, have been well investigated. This has led to a wide range of clinical tools and actuarial instruments for diagnosis and risk assessment regarding CSA. However, the neurobiological underpinnings of pedosexual behavior, specifically regarding hands-on pedophilic offenders (PO), remain elusive. Such biomarkers for PO individuals could potentially improve the early detection of high-risk PO individuals and enhance efforts to prevent future CSA.
To use machine learning and MRI data to identify PO individuals.
From a single-center male cohort of 14 PO individuals and 15 matched healthy control (HC) individuals, we acquired diffusion tensor imaging data (anisotropy, diffusivity, and fiber tracking) in literature-based regions of interest (prefrontal cortex, anterior cingulate cortex, amygdala, and corpus callosum). We trained a linear support vector machine to discriminate between PO and HC individuals using these WM microstructure data. , we investigated the PO model decision scores with respect to sociodemographic (age, education, and IQ) and forensic characteristics (psychopathy, sexual deviance, and future risk of sexual violence) in the PO subpopulation. We assessed model specificity in an external cohort of 53 HC individuals.
The classifier discriminated PO from HC individuals with a balanced accuracy of 75.5% (sensitivity = 64.3%, specificity = 86.7%, = 0.018) and an out-of-sample specificity to correctly identify HC individuals of 94.3%. The predictive brain pattern contained bilateral fractional anisotropy in the anterior cingulate cortex, diffusivity in the left amygdala, and structural prefrontal cortex-amygdala connectivity in both hemispheres. This brain pattern was associated with the number of previous child victims, the current stance on sexuality, and the professionally assessed risk of future sexual violent reoffending.
Aberrant white matter microstructure in the prefronto-temporo-limbic circuit could be a potential neurobiological correlate for PO individuals at high-risk of reoffending with CSA. Although preliminary and exploratory at this point, our findings highlight the general potential of MRI-based biomarkers and particularly WM microstructure patterns for future CSA risk assessment and preventive efforts.
儿童性虐待(CSA)已成为立法者、执法人员和心理健康专业人员关注的焦点。由于其在全球范围内的高发生率以及对个人和社会产生的深远且往往是长期的影响,CSA及其主要风险因素恋童癖已得到充分研究。这催生了一系列用于CSA诊断和风险评估的临床工具和精算仪器。然而,恋童性行为的神经生物学基础,特别是对于有实际接触行为的恋童癖犯罪者(PO)而言,仍然不清楚。针对PO个体的此类生物标志物可能会改善对高风险PO个体的早期检测,并加强预防未来CSA的努力。
利用机器学习和磁共振成像(MRI)数据识别PO个体。
从一个单中心男性队列中选取了14名PO个体和15名匹配的健康对照(HC)个体,我们在基于文献的感兴趣区域(前额叶皮质、前扣带回皮质、杏仁核和胼胝体)获取了扩散张量成像数据(各向异性、扩散率和纤维追踪)。我们训练了一个线性支持向量机,使用这些白质微观结构数据来区分PO个体和HC个体。此外,我们在PO亚组中研究了PO模型决策分数与社会人口统计学特征(年龄、教育程度和智商)以及法医特征(精神病态、性偏差和未来性暴力风险)之间的关系。我们在一个由53名HC个体组成的外部队列中评估了模型的特异性。
该分类器区分PO个体和HC个体的平衡准确率为75.5%(敏感性 = 64.3%,特异性 = 86.7%,P = 0.018),正确识别HC个体的样本外特异性为94.3%。预测性脑模式包括前扣带回皮质的双侧分数各向异性、左侧杏仁核的扩散率以及双侧半球的结构性前额叶皮质 - 杏仁核连接。这种脑模式与之前儿童受害者的数量、当前的性取向立场以及专业评估的未来性暴力再犯风险相关。
前额叶 - 颞叶 - 边缘回路中异常的白质微观结构可能是有再次实施CSA高风险的PO个体的潜在神经生物学关联因素。尽管目前处于初步探索阶段,但我们的研究结果凸显了基于MRI的生物标志物,特别是白质微观结构模式在未来CSA风险评估和预防工作中的总体潜力。