Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.
Front Immunol. 2023 Apr 19;14:1130513. doi: 10.3389/fimmu.2023.1130513. eCollection 2023.
Kidney renal clear cell carcinoma (KIRC) is the most frequently diagnosed subtype of renal cell carcinoma (RCC); however, the pathogenesis and diagnostic approaches for KIRC remain elusive. Using single-cell transcriptomic information of KIRC, we constructed a diagnostic model depicting the landscape of programmed cell death (PCD)-associated genes, namely cell death-related genes (CDRGs).
In this study, six CDRG categories, including apoptosis, necroptosis, autophagy, pyroptosis, ferroptosis, and cuproptosis, were collected. RNA sequencing (RNA-seq) data of blood-derived exosomes from the exoRBase database, RNA-seq data of tissues from The Cancer Genome Atlas (TCGA) combined with control samples from the GTEx databases, and single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database were downloaded. Next, we intersected the differentially expressed genes (DEGs) of the KIRC cohort from exoRBase and the TCGA databases with CDRGs and DEGs obtained from single-cell datasets, further screening out the candidate biomarker genes using clinical indicators and machine learning methods and thus constructing a diagnostic model for KIRC. Finally, we investigated the underlying mechanisms of key genes and their roles in the tumor microenvironment using scRNA-seq, single-cell assays for transposase-accessible chromatin sequencing (scATAC-seq), and the spatial transcriptomics sequencing (stRNA-seq) data of KIRC provided by the GEO database.
We obtained 1,428 samples and 216,155 single cells. After the rational screening, we constructed a 13-gene diagnostic model for KIRC, which had high diagnostic efficacy in the exoRBase KIRC cohort (training set: AUC = 1; testing set: AUC = 0.965) and TCGA KIRC cohort (training set: AUC = 1; testing set: AUC = 0.982), with an additional validation cohort from GEO databases presenting an AUC value of 0.914. The results of a subsequent analysis revealed a specific tumor epithelial cell of TRIB3 subset. Moreover, the results of a mechanical analysis showed the relatively elevated chromatin accessibility of TRIB3 in tumor epithelial cells in the scATAC data, while stRNA-seq verified that TRIB3 was predominantly expressed in cancer tissues.
The 13-gene diagnostic model yielded high accuracy in KIRC screening, and TRIB3 tumor epithelial cells could be a promising therapeutic target for KIRC.
肾透明细胞癌(KIRC)是肾细胞癌(RCC)中最常见的亚型;然而,KIRC 的发病机制和诊断方法仍不清楚。本研究利用 KIRC 的单细胞转录组信息,构建了一个描绘程序性细胞死亡(PCD)相关基因景观的诊断模型,即细胞死亡相关基因(CDRGs)。
本研究共收集了 6 个 CDRG 类别,包括细胞凋亡、坏死性凋亡、自噬、细胞焦亡、铁死亡和铜死亡。从 exoRBase 数据库下载血液衍生外泌体的 RNA 测序(RNA-seq)数据、来自 The Cancer Genome Atlas(TCGA)的组织的 RNA-seq 数据以及来自 GTEx 数据库的对照样本,并从 Gene Expression Omnibus(GEO)数据库下载单细胞 RNA 测序(scRNA-seq)数据。接下来,我们将 exoRBase 和 TCGA 数据库中 KIRC 队列的差异表达基因(DEGs)与单细胞数据集的 CDRGs 和 DEGs 进行交集,进一步使用临床指标和机器学习方法筛选候选生物标志物基因,并构建 KIRC 的诊断模型。最后,我们利用 GEO 数据库提供的 KIRC 的 scRNA-seq、单细胞转座酶可及染色质测序(scATAC-seq)和空间转录组学测序(stRNA-seq)数据,研究关键基因的潜在机制及其在肿瘤微环境中的作用。
共获得 1428 个样本和 216155 个单细胞。经过合理筛选,我们构建了一个用于 KIRC 的 13 基因诊断模型,该模型在 exoRBase KIRC 队列(训练集:AUC = 1;测试集:AUC = 0.965)和 TCGA KIRC 队列(训练集:AUC = 1;测试集:AUC = 0.982)中具有较高的诊断效能,来自 GEO 数据库的验证队列的 AUC 值为 0.914。进一步分析的结果揭示了 TRIB3 肿瘤上皮细胞的特定肿瘤上皮细胞亚群。此外,力学分析的结果表明,在 scATAC 数据中,TRIB3 在肿瘤上皮细胞中的染色质可及性相对较高,而 stRNA-seq 验证了 TRIB3 主要在癌组织中表达。
该 13 基因诊断模型在 KIRC 筛查中具有较高的准确性,TRIB3 肿瘤上皮细胞可能是 KIRC 的一个有前途的治疗靶点。