Laboratoire de Météorologie Dynamique, IPSL, Sorbonne Université, ENS, Université PSL, École Polytechnique, Institut Polytechnique de Paris, CNRS, Paris, France.
Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany.
J Chem Phys. 2023 May 14;158(18). doi: 10.1063/5.0147916.
Non-impact effects in the absorption spectra of HCl in various collision-partners are investigated both experimentally and theoretically. Fourier transform spectra of HCl broadened by CO2, air, and He have been recorded in the 2-0 band region at room temperature and for a wide pressure range, from 1 to up to 11.5 bars. Comparisons between measurements and calculations using Voigt profiles show strong super-Lorentzian absorptions in the troughs between successive lines in the P and R branches for HCl in CO2. A weaker effect is observed for HCl in air, while for HCl in He, Lorentzian wings are in very good agreement with measurements. In addition, the line intensities retrieved by fitting the Voigt profile on the measured spectra decrease with the density of the perturber. This perturber-density dependence decreases with the rotational quantum number. For HCl in CO2, the decrease in the retrieved line intensity can reach 2.5% per amagat for the first rotational quantum numbers. This number is about 0.8% per amagat for HCl in air, while for HCl in He, no density dependence of the retrieved line intensity is observed. Requantized classical molecular dynamics simulations have been performed for HCl-CO2 and HCl-He in order to simulate the absorption spectra for various perturber-density conditions. The density dependence of the intensities retrieved from the simulated spectra and the predicted super-Lorentzian behavior in the troughs between lines are in good agreement with experimental determinations for both HCl-CO2 and HCl-He. Our analysis shows that these effects are due to incomplete or ongoing collisions, which govern the dipole auto-correlation function at very short times. The effects of these ongoing collisions strongly depend on the details of the intermolecular potential: they are negligible for HCl-He but significant for HCl-CO2 for which a line-shape model beyond the impact approximation will be needed to correctly model the absorption spectra from the center to the far wings.
非碰撞效应对 HCl 在各种碰撞体中吸收光谱的影响进行了实验和理论研究。在室温下,记录了 HCl 在 CO2、空气和 He 中拓宽的 2-0 带区域的傅里叶变换光谱,压力范围从 1 到 11.5 巴。使用 Voigt 轮廓对测量值和计算值进行比较表明,HCl 在 CO2 中的 P 和 R 支之间的连续线之间的波谷中存在很强的超洛伦兹吸收。在 HCl 中观察到较弱的空气效应,而对于 HCl 在 He 中,洛伦兹翅膀与测量值非常吻合。此外,通过拟合 Voigt 轮廓对测量光谱进行拟合得到的线强度随着扰动物体的密度而降低。这种扰动物体密度依赖性随转动量子数而降低。对于 HCl 在 CO2 中的情况,对于第一转动量子数,检索线强度的降低可达每阿姆加特的 2.5%。对于 HCl 在空气的情况,该数字约为每阿姆加特的 0.8%,而对于 HCl 在 He 中,未观察到检索线强度的密度依赖性。为了模拟各种扰动物体密度条件下的吸收光谱,对 HCl-CO2 和 HCl-He 进行了再量子化经典分子动力学模拟。从模拟光谱中检索到的强度的密度依赖性以及线之间波谷中的预测超洛伦兹行为与 HCl-CO2 和 HCl-He 的实验测定结果非常吻合。我们的分析表明,这些效应是由于不完全或正在进行的碰撞导致的,这些碰撞在非常短的时间内控制偶极自相关函数。这些正在进行的碰撞的影响强烈取决于分子间势的细节:对于 HCl-He,它们可以忽略不计,但对于 HCl-CO2,需要超越冲击近似的线形状模型来正确模拟从中心到远翼的吸收光谱。