Suppr超能文献

利用现有和新兴综合征数据预测英格兰的诺如病毒:信息流行病学研究。

Predicting Norovirus in England Using Existing and Emerging Syndromic Data: Infodemiology Study.

机构信息

Institute of Infection, Ecological and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom.

National Institute for Health and Care Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom.

出版信息

J Med Internet Res. 2023 May 8;25:e37540. doi: 10.2196/37540.

Abstract

BACKGROUND

Norovirus is associated with approximately 18% of the global burden of gastroenteritis and affects all age groups. There is currently no licensed vaccine or available antiviral treatment. However, well-designed early warning systems and forecasting can guide nonpharmaceutical approaches to norovirus infection prevention and control.

OBJECTIVE

This study evaluates the predictive power of existing syndromic surveillance data and emerging data sources, such as internet searches and Wikipedia page views, to predict norovirus activity across a range of age groups across England.

METHODS

We used existing syndromic surveillance and emerging syndromic data to predict laboratory data indicating norovirus activity. Two methods are used to evaluate the predictive potential of syndromic variables. First, the Granger causality framework was used to assess whether individual variables precede changes in norovirus laboratory reports in a given region or an age group. Then, we used random forest modeling to estimate the importance of each variable in the context of others with two methods: (1) change in the mean square error and (2) node purity. Finally, these results were combined into a visualization indicating the most influential predictors for norovirus laboratory reports in a specific age group and region.

RESULTS

Our results suggest that syndromic surveillance data include valuable predictors for norovirus laboratory reports in England. However, Wikipedia page views are less likely to provide prediction improvements on top of Google Trends and Existing Syndromic Data. Predictors displayed varying relevance across age groups and regions. For example, the random forest modeling based on selected existing and emerging syndromic variables explained 60% variance in the ≥65 years age group, 42% in the East of England, but only 13% in the South West region. Emerging data sets highlighted relative search volumes, including "flu symptoms," "norovirus in pregnancy," and norovirus activity in specific years, such as "norovirus 2016." Symptoms of vomiting and gastroenteritis in multiple age groups were identified as important predictors within existing data sources.

CONCLUSIONS

Existing and emerging data sources can help predict norovirus activity in England in some age groups and geographic regions, particularly, predictors concerning vomiting, gastroenteritis, and norovirus in the vulnerable populations and historical terms such as stomach flu. However, syndromic predictors were less relevant in some age groups and regions likely due to contrasting public health practices between regions and health information-seeking behavior between age groups. Additionally, predictors relevant to one norovirus season may not contribute to other seasons. Data biases, such as low spatial granularity in Google Trends and especially in Wikipedia data, also play a role in the results. Moreover, internet searches can provide insight into mental models, that is, an individual's conceptual understanding of norovirus infection and transmission, which could be used in public health communication strategies.

摘要

背景

诺如病毒约占全球胃肠炎负担的 18%,可影响所有年龄组。目前尚无获得许可的疫苗或可用的抗病毒治疗方法。然而,精心设计的早期预警系统和预测可以指导针对诺如病毒感染的预防和控制的非药物方法。

目的

本研究评估了现有综合征监测数据和新兴数据源(如互联网搜索和维基百科页面浏览量)在预测英格兰不同年龄组诺如病毒活动方面的预测能力。

方法

我们使用现有的综合征监测和新兴综合征数据来预测表明诺如病毒活动的实验室数据。使用两种方法评估综合征变量的预测潜力。首先,格兰杰因果关系框架用于评估在给定区域或年龄组中,个体变量是否先于诺如病毒实验室报告的变化。然后,我们使用随机森林模型来估计在考虑其他变量的情况下每个变量的重要性,使用两种方法:(1)均方误差的变化,(2)节点纯度。最后,将这些结果组合成一个可视化图,指示特定年龄组和地区诺如病毒实验室报告的最具影响力的预测因子。

结果

我们的结果表明,综合征监测数据包括英格兰诺如病毒实验室报告的有价值的预测因子。然而,与 Google Trends 和现有综合征数据相比,维基百科页面浏览量不太可能提供预测改进。预测因子在不同年龄组和地区表现出不同的相关性。例如,基于选定的现有和新兴综合征变量的随机森林模型解释了≥65 岁年龄组的 60%方差、英格兰东部的 42%,但仅解释了西南部的 13%。新兴数据集突出了相对搜索量,包括“流感症状”、“孕妇诺如病毒”和特定年份的诺如病毒活动,例如“2016 年诺如病毒”。在多个年龄组中,呕吐和肠胃炎等症状被确定为现有数据源中的重要预测因子。

结论

现有和新兴数据源可以帮助预测英格兰某些年龄组和地理区域的诺如病毒活动,特别是针对脆弱人群和历史术语(如肠胃流感)的呕吐、肠胃炎和诺如病毒的预测因子。然而,在某些年龄组和地区,综合征预测因子的相关性较低,这可能是由于地区之间的公共卫生实践和年龄组之间的健康信息搜索行为存在差异。此外,与一个诺如病毒季节相关的预测因子可能不会对其他季节产生影响。数据偏差,如 Google Trends 中的低空间粒度,尤其是在维基百科数据中,也会影响结果。此外,互联网搜索可以深入了解个人对诺如病毒感染和传播的概念理解,即个人的心理模型,这可以用于公共卫生传播策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a96/10203923/809ec3d93a76/jmir_v25i1e37540_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验