Suppr超能文献

基于谷歌趋势数据的英镑脱欧汇率可预测性分析。

Predictability analysis of the Pound's Brexit exchange rates based on Google Trends data.

作者信息

Mavragani Amaryllis, Gkillas Konstantinos, Tsagarakis Konstantinos P

机构信息

Department of Computing Science and Mathematics, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK.

Department of Business Administration, University of Patras, University Campus-Rio, P.O. Box 1391, Patras, 26500 Greece.

出版信息

J Big Data. 2020;7(1):79. doi: 10.1186/s40537-020-00337-2. Epub 2020 Sep 18.

Abstract

During the last decade, the use of online search traffic data is becoming popular in examining, analyzing, and predicting human behavior, with Google Trends being a popular tool in monitoring and analyzing the users' online search patterns in several research areas, like health, medicine, politics, economics, and finance. Towards the direction of exploring the Sterling Pound's predictability, we employ Google Trends data from the last 5 years (March 1st, 2015 to February 29th, 2020) and perform predictability analysis on the Pound's exchange rates to Euro and Dollar. The period selected includes the 2016 UK referendum as well as the actual Brexit day (January 31st, 2020), with the analysis aiming at analyzing the Pound's relationships with Google query data on Pound-related keywords and topics. A quantile dependence method is employed, i.e., cross-quantilograms, to test for directional predictability from Google Trends data to the Pound's exchange rates for lags from zero to 30 (in weeks). The results indicate that statistically significant quantile dependencies exist between Google query data and the Pound's exchange rates, which point to the direction of one of the main implications in this field, that is to examine whether the movements in one economic variable can cause reactions in other economic variables.

摘要

在过去十年中,在线搜索流量数据在研究、分析和预测人类行为方面越来越受欢迎,谷歌趋势是监测和分析多个研究领域(如健康、医学、政治、经济和金融)用户在线搜索模式的常用工具。为了探索英镑的可预测性,我们使用了过去五年(2015年3月1日至2020年2月29日)的谷歌趋势数据,并对英镑兑欧元和美元的汇率进行了可预测性分析。所选时间段包括2016年英国脱欧公投以及实际脱欧日(2020年1月31日),分析旨在分析英镑与谷歌关于英镑相关关键词和主题的查询数据之间的关系。采用了一种分位数依赖方法,即交叉分位数图,来测试从谷歌趋势数据到英镑汇率在零至30周(滞后)的方向可预测性。结果表明,谷歌查询数据与英镑汇率之间存在统计上显著的分位数依赖关系,这指向了该领域主要含义之一的方向,即研究一个经济变量的变动是否会引起其他经济变量的反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验