Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA; Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA.
Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA.
J Biol Chem. 2023 Jun;299(6):104791. doi: 10.1016/j.jbc.2023.104791. Epub 2023 May 6.
Radical S-adenosyl-l-methionine (SAM) enzymes are ubiquitous in nature and carry out a broad variety of difficult chemical transformations initiated by hydrogen atom abstraction. Although numerous radical SAM (RS) enzymes have been structurally characterized, many prove recalcitrant to crystallization needed for atomic-level structure determination using X-ray crystallography, and even those that have been crystallized for an initial study can be difficult to recrystallize for further structural work. We present here a method for computationally engineering previously observed crystallographic contacts and employ it to obtain more reproducible crystallization of the RS enzyme pyruvate formate-lyase activating enzyme (PFL-AE). We show that the computationally engineered variant binds a typical RS [4Fe-4S] cluster that binds SAM, with electron paramagnetic resonance properties indistinguishable from the native PFL-AE. The variant also retains the typical PFL-AE catalytic activity, as evidenced by the characteristic glycyl radical electron paramagnetic resonance signal observed upon incubation of the PFL-AE variant with reducing agent, SAM, and PFL. The PFL-AE variant was also crystallized in the [4Fe-4S] state with SAM bound, providing a new high-resolution structure of the SAM complex in the absence of substrate. Finally, by incubating such a crystal in a solution of sodium dithionite, the reductive cleavage of SAM is triggered, providing us with a structure in which the SAM cleavage products 5'-deoxyadenosine and methionine are bound in the active site. We propose that the methods described herein may be useful in the structural characterization of other difficult-to-resolve proteins.
自由基 S-腺苷甲硫氨酸(SAM)酶在自然界中普遍存在,能够进行广泛的、具有挑战性的化学转化,这些转化由氢原子的提取引发。尽管已经对许多的自由基 SAM(RS)酶进行了结构表征,但许多酶仍然难以结晶,无法通过 X 射线晶体学进行原子水平的结构测定,甚至那些已经为初始研究结晶的酶也很难进一步结晶用于结构研究。我们在这里提出了一种计算工程化先前观察到的晶体学接触的方法,并将其应用于获得 RS 酶丙酮酸(formate)-乙醛酸裂解酶激活酶(PFL-AE)更可重复的结晶。我们表明,经过计算工程化的变体可以结合典型的 RS [4Fe-4S] 簇,该簇结合 SAM,其电子顺磁共振特性与天然 PFL-AE 无法区分。该变体还保留了典型的 PFL-AE 催化活性,这可以通过在还原剂、SAM 和 PFL 存在下孵育 PFL-AE 变体时观察到典型的甘氨酰基自由基电子顺磁共振信号来证明。该 PFL-AE 变体也在 [4Fe-4S] 状态下与 SAM 结合结晶,提供了在没有底物的情况下 SAM 复合物的新的高分辨率结构。最后,通过将这样的晶体在连二亚硫酸钠溶液中孵育,SAM 的还原裂解被触发,为我们提供了一个结构,其中 SAM 裂解产物 5'-脱氧腺苷和甲硫氨酸结合在活性位点中。我们提出,本文描述的方法可能对其他难以解决的蛋白质的结构表征有用。