Suppr超能文献

一种基于集成的高效机器学习方法用于预测慢性肾脏病。

An efficient ensemble based machine learning approach for predicting Chronic Kidney Disease.

作者信息

Chhabra Divyanshi, Juneja Mamta, Chutani Gautam

机构信息

University Institute of Engineering and Technology, Panjab University, Chandigarh 160025, India.

出版信息

Curr Med Imaging. 2023 May 8. doi: 10.2174/1573405620666230508104538.

Abstract

BACKGROUND

Chronic kidney disease (CKD) is a long-term risk to one's health that can result in kidney failure. CKD is one of today's most serious diseases, and early detection can aid in proper treatment. Machine learning techniques have proven to be reliable in the early medical diagnosis.

OBJECTIVE

The paper aims to perform CKD prediction using machine learning classification approaches. The dataset used for the present study for detecting CKD was obtained from the machine learning repository at the University of California, Irvine (UCI).

METHOD

In this study, twelve machine learning-based classification algorithms with full features were used. Since the CKD dataset had a class imbalance issue, the Synthetic Minority Over-Sampling technique (SMOTE) was used to alleviate the problem of class imbalance and review the performance based on machine learning classification models using the K fold cross-validation technique. The proposed work compares the results of twelve classifiers with and without the SMOTE technique, and then the top three classifiers with the highest accuracy, Support Vector Machine, Random Forest, and Adaptive Boosting classification algorithms were selected to use the ensemble technique to improve performance.

RESULTS

The accuracy achieved using a stacking classifier as an ensemble technique with cross-validation is 99.5%.

CONCLUSION

The study provides an ensemble learning approach in which the top three best-performing classifiers in terms of cross-validation results are stacked in an ensemble model after balancing the dataset using SMOTE. This proposed technique could be applied to other diseases in the future, making disease detection less intrusive and cost-effective.

摘要

背景

慢性肾脏病(CKD)是一种长期危害健康的疾病,可导致肾衰竭。CKD是当今最严重的疾病之一,早期检测有助于进行适当治疗。机器学习技术已被证明在早期医学诊断中是可靠的。

目的

本文旨在使用机器学习分类方法进行CKD预测。本研究用于检测CKD的数据集来自加利福尼亚大学欧文分校(UCI)的机器学习库。

方法

在本研究中,使用了十二种具有完整特征的基于机器学习的分类算法。由于CKD数据集存在类不平衡问题,因此使用合成少数过采样技术(SMOTE)来缓解类不平衡问题,并使用K折交叉验证技术基于机器学习分类模型评估性能。所提出的工作比较了使用和不使用SMOTE技术的十二种分类器的结果,然后选择准确率最高的前三种分类器,即支持向量机、随机森林和自适应提升分类算法,使用集成技术来提高性能。

结果

使用堆叠分类器作为集成技术并进行交叉验证所达到的准确率为99.5%。

结论

该研究提供了一种集成学习方法,即在使用SMOTE平衡数据集后,将交叉验证结果中表现最佳的前三种分类器堆叠到一个集成模型中。这种提出的技术未来可应用于其他疾病,可以使疾病检测的侵入性更小且更具成本效益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验