Opt Express. 2023 Apr 10;31(8):13436-13446. doi: 10.1364/OE.486311.
Atomic magnetometry is one of the most sensitive field-measurement techniques for biological, geo-surveying, and navigational applications. An essential process in atomic magnetometry is measurement of optical polarization rotation of a near-resonant beam due to its interaction with atomic spins under an external magnetic field. In this work, we present the design and analysis of a silicon-metasurface-based polarization beam splitter that have been tailored for operation in a rubidium magnetometer. The metasurface polarization beam splitter operates at a wavelength of 795 nm and has a transmission efficiency > 83% and a polarization extinction ratio > 20 dB. We show that these performance specifications are compatible with magnetometer operation in miniaturized vapor cells with sub-picotesla-level sensitivity and discuss the prospect of realizing compact, high-sensitivity atomic magnetometers with nanophotonic component integration.
原子磁力计是生物、地质勘测和导航应用中最灵敏的磁场测量技术之一。原子磁力计中的一个基本过程是测量由于原子在外磁场中自旋相互作用而导致近共振光束的光偏振旋转。在这项工作中,我们提出了一种基于硅超表面的偏振分束器的设计和分析,该分束器经过专门设计可在铷磁力计中运行。超表面偏振分束器在 795nm 的波长下工作,具有大于 83%的传输效率和大于 20dB 的偏振消光比。我们表明,这些性能规格与在具有亚皮特斯拉级灵敏度的小型蒸汽室内进行磁力计操作兼容,并讨论了通过纳米光子元件集成实现紧凑、高灵敏度原子磁力计的前景。