Opt Express. 2023 May 8;31(10):15409-15422. doi: 10.1364/OE.487426.
We investigate the role of external magnetic fields and linearly polarized pump light, especially when their directions are parallel or vertical, on the propagation of the fractional vector vortex beams (FVVBs) through a polarized atomic system. Herein, the different configurations of external magnetic fields lead to various optically polarized selective transmissions of FVVBs with different fractional topological charge α caused by the polarized atoms, which is theoretically demonstrated by the atomic density matrix visualization analysis and experimentally explored by Cesium atom vapor. Meanwhile, we find that the FVVBs-atom interaction is a vectorial process due to the different optical vector polarized states. In this interaction process, the atomic optically polarized selection property provides potential for the realization of the magnetic compass based on warm atoms. For the FVVBs, due to the rotational asymmetry of the intensity distribution, we can observe some transmitted light spots with unequal energy. Compared with the integer vector vortex beam, it is possible to obtain a more precise magnetic field direction by fitting the different "petal" spots of the FVVBs.
我们研究了外部磁场和线偏振泵浦光的作用,特别是当它们的方向平行或垂直时,对分数阶矢量涡旋光束(FVVBs)通过极化原子系统传播的影响。在此,不同配置的外部磁场导致由于极化原子引起的具有不同分数拓扑电荷 α 的 FVVBs 的不同光学偏振选择性传输,这通过原子密度矩阵可视化分析得到了理论证明,并通过铯原子蒸汽进行了实验探索。同时,我们发现 FVVBs-原子相互作用是一个矢量过程,这是由于不同的光学矢量偏振态。在这个相互作用过程中,原子的光学偏振选择性为基于暖原子的磁罗盘的实现提供了可能性。对于 FVVBs,由于强度分布的旋转不对称性,我们可以观察到一些具有不等能量的透射光斑。与整数矢量涡旋光束相比,通过拟合 FVVBs 的不同“花瓣”光斑,可以获得更精确的磁场方向。