Opt Express. 2023 May 8;31(10):16659-16675. doi: 10.1364/OE.488597.
Temporal phase unwrapping (TPU) is significant for recovering an unambiguous phase of discontinuous surfaces or spatially isolated objects in fringe projection profilometry. Generally, temporal phase unwrapping algorithms can be classified into three groups: the multi-frequency (hierarchical) approach, the multi-wavelength (heterodyne) approach, and the number-theoretic approach. For all of them, extra fringe patterns of different spatial frequencies are required for retrieving the absolute phase. Due to the influence of image noise, people have to use many auxiliary patterns for high-accuracy phase unwrapping. Consequently, image noise limits the efficiency and the measurement speed greatly. Further, these three groups of TPU algorithms have their own theories and are usually applied in different ways. In this work, for the first time to our knowledge, we show that a generalized framework using deep learning can be developed to perform the TPU task for different groups of TPU algorithms. Experimental results show that benefiting from the assistance of deep learning the proposed framework can mitigate the impact of noise effectively and enhance the phase unwrapping reliability significantly without increasing the number of auxiliary patterns for different TPU approaches. We believe that the proposed method demonstrates great potential for developing powerful and reliable phase retrieval techniques.
时间相位解缠(TPU)对于在条纹投影轮廓术中恢复不连续表面或空间隔离物体的明确相位至关重要。通常,时间相位解缠算法可以分为三类:多频(分层)方法、多波长(外差)方法和数论方法。对于所有这些方法,都需要不同空间频率的额外条纹图案来获取绝对相位。由于图像噪声的影响,人们必须使用许多辅助图案来进行高精度的相位解缠。因此,图像噪声极大地限制了效率和测量速度。此外,这三组 TPU 算法都有自己的理论,并且通常以不同的方式应用。在这项工作中,据我们所知,我们首次表明,可以开发一个使用深度学习的广义框架来执行不同 TPU 算法组的 TPU 任务。实验结果表明,得益于深度学习的辅助,所提出的框架可以有效地减轻噪声的影响,显著提高相位解缠的可靠性,而无需为不同的 TPU 方法增加辅助图案的数量。我们相信,所提出的方法为开发强大而可靠的相位恢复技术展示了巨大的潜力。